期刊文献+

一种基于自适应膨胀因子的聚类新方法 被引量:2

New Approach of Clustering Based on Adaptive Inflation Factor
下载PDF
导出
摘要 针对传统聚类方法存在的不足,提出了一种基于自适应膨胀因子的聚类新方法(CAIF)。相对于现有的一些聚类方法,CAIF方法不需要用户确定类数k值,克服了聚类结果对k值的敏感性;与数据的输入顺序无关,能够进行增量聚类。同时,CAIF方法还能有效地发现孤立点。最后通过实验验证了该方法的有效性。 In the face of the deficiencies in the traditional clustering methods, this paper puts forward a new clustering based on adaptive inflation factor(CAIF) approach which is different from some existent clustering methods. This approach does not depend on the number of class sorts that has big influence on clustering result. CAIF, which is independent of data input order, can be used in incremental clustering. At the same time, CAIF can find isolated points efficiently. The experiments sufficiently prove the validity of this approach.
出处 《计算机工程》 CAS CSCD 北大核心 2003年第9期100-102,共3页 Computer Engineering
关键词 自适应 膨胀因子 增量聚类 Adaptive Inflation factor Incremental clustering
  • 相关文献

参考文献4

  • 1HanJiawei KambrM.DATA MINING Concepts and Techniques[影印版].北京:高等教育出版社,.2001-05.
  • 2Leouski A, Croft W. An Evaluation of Techniques for Clustering Search Result[Technical Report 1R-76].Department of Computer Science, University of Massachusetts, 1996.
  • 3Cortes C, Vapnik V. Support-vector Networks. Machine Learning1995,20:273-297.
  • 4Gabriel L, Somlo, Adele E H. Incremental Clustering for Profile Maintenance in Information Gathering Web Agents. AGENTS'01,2001-05.

同被引文献27

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部