期刊文献+

时间序列最大Lyapunov指数的计算 被引量:21

Computing the Largest Lyapunov Exponent from Time Series
下载PDF
导出
摘要 从Lyapunov指数的定义出发,研究了一种快速、高效计算时间序列最大Lyapunov指数方法。通过对几种已知模型的数值模拟表明:最大Lyapunov指数与重构相空间的维数和延迟时间在较大的变化范围能很好符合,重构相空间所需的数据较少,维数较低,使计算在结果保持准确的前提下大大简化。 A method to calculate the largest Lyapunov exponent from the observed time series based on its definition is proposed. We have tested it on several known systems, such as the Logistic model, the Henon mapping and the Lorenz system. It is found that the estimated largest Lyapunov exponent from time series has a reasonable good accuracy. More remarkably, the simulation result is independent of the embedding dimension and the delay time to a certain extent. The shorter data and the lower dimension of phase space simplify the computation without significant loss of precision.
出处 《应用科学学报》 CAS CSCD 2003年第2期127-131,共5页 Journal of Applied Sciences
基金 国家自然科学基金(69871016)
关键词 混沌动力学 时间序列 最大LYAPUNOV指数 重构相空间 维数 延迟时间 Lyapunov exponent phase space reconstruction time series
  • 相关文献

参考文献13

  • 1Benettin G, Froeschle C, Scheidecker J P. Kolmogorov entropy of a dynamical system with increasing number of degrees of freedom[J]. Phys Rev,1979,19A(8) :2454 - 2457.
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990~64(8) :821 - 824.
  • 3Pecora L M, Carroll T L. Driving systems with chaotic signals[J]. Phys Rev, 1991,44A(4): 2374 -2383.
  • 4Henry D I Abarbanel, Brown R, Kadtke J B. Prediction in chaotic nonlinear systems : Methods for time series with broadband Fourier spectra[J]. Phys Rev,1990,41A(4):1782 - 1803.
  • 5Brown Reggie, Bryant Paul, Henry D I Abarbanel.Computing the Lyapunov spectrum of a dynamical system from an observed time series[J]. Phys Rev,1991,43A(6) :2787 - 2804.
  • 6Bremen H F V, Udwadia F E, Proskurowski W. An efficient QR based method for the computation of Lyapunov exponents[J]. Physica, 1997,101 (1) : 1 -16.
  • 7Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems[J].Prog Theor Phys, 1979,61 (6) : 1605 - 1615.
  • 8Barna G, Tsuda A I. New method for computing Lyapunov exponents[J]. Phys Lett. 1993,175A(6):.421 - 427.
  • 9Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal [J]. Phys Rev, 1983,28A(4) :2591 - 2593.
  • 10Albano A M, Passmante A, Farrell M E. Using higher-order correlations to define an embedding window[J]. Physica, 1991,54D(1,2):85 - 97.

同被引文献197

引证文献21

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部