期刊文献+

基于模糊C均值和BP神经网络的遥感影像自动分类算法 被引量:1

AUTOMATIC REMOTE SENSING IMAGE CLASSIFICATION ALGORITHM BASED ON FCM AND BP NEURAL NETWORK
下载PDF
导出
摘要 针对非监督分类算法分类精度不高、监督法分类算法的训练样本需要人工选择且容易误选的问题,提出了一种基于模糊C均值聚类(FCM)和BP神经网络相结合的遥感影像自动分类算法。首先利用FCM对影像进行初始聚类,然后根据聚类结果,由该算法自动选取其中的纯净像元作为训练样本,并送入BP网络进行学习,用最终训练得到的BP神经网络分类器对TM遥感影像进行分类,实验结果表明该算法具有较高的分类精度,能够满足大尺度地物类别判定的需要。 As for the problems that low classification accuracy of non-supervise classification algorithm and training sample of super-vise classification algorithm needs manual selection which is easy to be made wrongly, there is an automatic classfication algorithm of remote sensing image which is based on the combination of FCM and BP neural network. First, this paper uses FCM to make initial clusters of images. Then in accordance with the results of clusters, this paper picks out the endmembers which are automatically select-ed by the algorithm as the traaning samples, sends the samples to study in BP network and uses the BP neural network classifier which is got from the final training to classify the TM remote sensing images. The result shows that the algorithm owns high accuracy which could meet the requirements of determination of object types in a large scale.
作者 黄奇瑞
出处 《南阳理工学院学报》 2015年第4期57-60,共4页 Journal of Nanyang Institute of Technology
关键词 模糊C均值 神经网络 TM遥感影像 纯净像元 自动分类 FCM neutral network TM remote sensing images endmember automatic classfication
  • 相关文献

参考文献1

  • 1James C. Bezdek,Robert Ehrlich,William Full.FCM: The fuzzy c -means clustering algorithm. Computers and Geosciences . 1984

共引文献1

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部