期刊文献+

基于神经网络的化工过程测量数据在线校正技术的研究 被引量:11

On-line Data Rectification for Chemical Process Measurements Based on Artificial Neural Networks
下载PDF
导出
摘要 研究了人工神经网络在化工过程测量数据校正中的应用,提出了新的样本构造方法和神经网络的在线训练策略。对某乙烯装置裂解气分离系统测量数据, 应用自行设计开发的改进算法的神经网络与数据校正系统集成运行, 结果表明基于神经网络的数据校正技术能对测量数据中所含的随机误差和过失误差进行同时校正,提高过程数据的精度和校正过程的稳定性,同时满足数据校正的实时性要求。 The application of artificial neural networks (ANN) in on-line data rectification of chemical process measurements was studied. A modified forward ANN using resilient back propagation algorithm was developed and integrated in data reconciliation system. With studying the separation process of ethylene cracking gases, automatic pattern acquisition, on-line training and on-line data rectification were realized. It is shown that precision of data obtained by simultaneous reconciliation and error detection is improved greatly. The proposed method utilizes abundant historical data to make up insufficiency of space redundancy. In addition, it avoids degradation of error detection power for small magnitude measurements due to their little contribution to constraint residue. ANN integrated operation strategy allows automatic and parallel on-line training according to changes of steady states. It overcomes operational limitation of ANN to some extent, thereby enhancing quality and stability of data rectification in practice. In contrast to traditional methods, this method is especially suitable for rigorous real-time application with less computation expenses.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2003年第3期319-324,共6页 Journal of Chemical Engineering of Chinese Universities
基金 国家自然科学基金(29976015 20225620) 国家重大基础研究规划(G20000263) 教委博士点基金的资助。
关键词 数据校正 人工神经网络 过失误差侦破 集成运行 Backpropagation Error detection Measurements Neural networks Separation
  • 相关文献

参考文献10

  • 1YUAN Yong—gen(袁永根) LI Hua—sheng(李华生).Process System Data Rectification Technology(过程系统测量数据校正技术)[M].Beijing(北京):China Petrochemical Press(中国石化出版社),1996..
  • 2金思毅,周传光.化工过程稳态检验的区间拓展法[J].高校化学工程学报,2000,14(1):71-76. 被引量:9
  • 3ZHOU Chuan—guang(周传光).Study on On—line Process Data Reconciliation Integrated Technology Based on Simulation and Artificial Neural Networks(基于过程模拟与神经网络的测量数据在线校正技术集成化研究)[M].Guangzhou(广州):South China University of Technology(华南理工大学),1999..
  • 4KONG Ling(孔玲).Development of General Chemical Engineering Process Data Reconciliation System(通用型化工过程测量数据校正软件的开发)[M].Qingdao(青岛):Qingdao Institute of Chemical Technology(青岛化工学院),2000..
  • 5Patricia A, David M. Data rectification and gross error detection in a steady-state process via aritificial neural networks [J]. Ind Eng Chem Res, 1993, 32(12): 3020-3028.
  • 6DU Yang-guang, Use of novel autoassociative neural network for nonlinear steady-state data reconciliation [J]. AIChE J, 1997,43 (7): 1785-1796.
  • 7Abhijit S, Pattern Recognition with Reural Network in C++ [M], Beijing: Publishing House of Electronics Industry, 1999.
  • 8Gupta G, Narasimhan S, Application of neural networks for gross error detection [J]. Ind Eng Chem Res, 1993, 32(8):1651-1657.
  • 9Aldrich C, Deventer V, Identification of gross errors in material balance measurements by means of neural nets [J]. Chem Eng Sci, 1994, 49(9): 1357-1368.
  • 10Aldrich C, Deventer V. Comparison of different artificial neural nets for the detection and location of gross errors in process systems [J]. Ind Eng Chem Res, 1995, 34(1): 216-224.

二级参考文献1

  • 1罗永泰(译),应用统计手册,1988年

共引文献8

同被引文献100

引证文献11

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部