摘要
本文建立了刚性有限元的参变量变分原理,并给出了严格的证明。利用本文的方法进行弹塑性分析,不但计算量小,精度高,收敛快,而且可以处理非法向流动问题,并为岩体稳定性分析提供了一种有效的途径。
Based on the references [1,2] the parametric variational principle for Rigid Finite Element Method is put forward and proved in this paper. Using the method presented here for elasto-plastic analysis, the computational work will be considerably reduced and the accuracy will be improved. Furthermore, the method can easily consider the non-associated flow rule and provide an efficiency approach for stability analysis of rock structure.
基金
国家自然科学基金
关键词
参变量
变分原理
刚性有限元
泛函
rigid finite element, functional, non-associated flow