期刊文献+

电子辐照能量对Kapton/Al热控涂层光学性能的影响 被引量:9

Effects of electron irradiation energy on optical properties of Kapton/Al thermal control coatings
下载PDF
导出
摘要  研究了电子辐照时,电子能量与累积通量对Kapton/Al热控涂层光学性能的影响。采用原位测量的手段记录了辐照前后的光谱反射系数。试验结果表明,电子辐照后Kapton/Al热控涂层的反射性能,在太阳光谱辐射强度较大的300~1200nm波长区间产生较大程度退化。在电子辐照作用下,作为离子导电型聚合物的Kapton薄膜表面没有发现辐照充电效应。辐照后涂层材料存在"退火效应",或称"漂白效应"。Kapton/Al涂层太阳吸收比的变化量与电子辐照累积通量的变化关系成幂函数形式,其系数与指数的极大值与极小值分别出现在电子能量为50keV附近。在辐照累积通量相同时,该变化量随辐照电子能量的提高而增大。 The effects of energy and flux of electrons on Kapton/Al thermal control coatings were investigated. The spectral reflectance before and after irradiations of electrons was in-situ measured. Experimental results show that the spectral reflectivity of Kapton/Al coatings was apparently degraded in the 300-1200 nm wavelength range of solar electromagnetic rays after electron irradiation. Under the exposure to electrons, no charging effects were found on the surface of Kapton films as an ion-induced conducting polymer. After electron irradiation, an annealing or bleaching effect occurred on the Kapton/Al coatings. For a given irradiation flux, the increment in solar absorptance of Kapton/Al coatings increased with electron energy. The relation of the increment in solar absorptance of Kapton/Al coatings with the irradiation flux of electrons could be expressed as power function of the electron flux. The coefficient and index of the power function are related to electron energy with maximum and minimum at the electron energy of 50 keV, respectively.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2003年第8期741-745,共5页 High Power Laser and Particle Beams
基金 国家重点基础研究专项经费资助课题(G19990650)
关键词 Kapton/Al 热控涂层 电子辐照 光学性能 空间环境 地面模拟 Aerospace applications Aluminum Electron energy levels Electron irradiation In situ processing Optical properties
  • 相关文献

参考文献13

  • 1李春东,杨德庄,何世禹,M.M.Mikhailov.电子与太阳电磁射线综合辐照对Teflon FEP/Al光学性能的影响[J].强激光与粒子束,2002,14(6):848-852. 被引量:5
  • 2Pomazanov M V, Egorov V A. Solar sailz structural principles, control and interstellar survey.Aerospace Research, 1999, 37(4):397--404.
  • 3Semenov U P, Branets V N, Grigoriev U I, et al. Spreading test of thin film reflector (D=20m) without frames ("Flag-2"). Aerospace Research, 1994, 32(4-5):186--193.
  • 4Seiromyatnikov V S, Koshelev V A, et al. Cleaning the garbage in Near-Earth space using large size thin film reflector spread by centrifugal force without frames. Aerospace Research, 1994, 32(4-5):218--220.
  • 5Leet S J, Fogdall L B, Wilkinson M C. The effects of simulated space radiation on silver teflon, white polyurethane paint, and fused-silicaoptical solar reflectors[J]. AIAA, 1993, 93-2876:1--11.
  • 6Tribble A C, Lukins R, watts E, et al. Low earth orbit thermal control coatings exposure flight tests, a comparison of U.S. and Russian result[R]. NASA-CP-4647, 1995, 95-22919:1--9.
  • 7Gurevich M M.Itsko I F,Ceredenko M M.Optical properties of paint coatings.Leningradl Chemistry Press,1984.71—82.
  • 8Mikhailov M M. Prediction of degradation in optical properties of thermal control coatings on spacecrafts. New Siberia: Science Press, 1999. 55--72.
  • 9Tonon C, Dinguirard M, Pona C. Model of the degradation of thermal control coatings in space environment[A]. 8^th International Symposium on "Materials in a Space Environment", 5^th International Conference on "Protection of Materials and Structures from the LEO Space Environment"[C]. Arcachon-France, 2000.
  • 10Starodubzev S V, Romanov A V. Charging particles through substance. Press of Uzbek Academy of Science, 1962. 18--52.

二级参考文献13

  • 1Joyce A, Kim K, Jacqueline A, et al. Mechanical properties degradation of teflon FEP returned from the hubble space telescope[R]. AIAA Paper, 1998, 0895: 1-11.
  • 2МихайловММ, ДворецкийМИ. Медотикапрогнозированияработоспособноститерморегулиру -ющихпокрытийкосмическихаппаратовпорезультатамназемныхиспытаний[J]. Неорганические Mатериалы, 1994, 30(2):201-209.
  • 3Leet S J, Fogdall L B, Wilkinson M C. The effects of simulated space radiation on silver teflon, white polyurethane paint, and fused-silica optical solar reflectors[R]. AIAA Paper, 1993, 2876:1-11.
  • 4Tribble A C, Lukins R, Watts E, et al. Low earth orbit thermal control coatings exposure flight tests: a comparison of U S and Russian results[J]. NASA-CP-4647, 1995, 22919: 1-9.
  • 5Kleiman J, Iskanderova Z. Technological aspects of protection of polymers and carbon-based materials in space[A]. 8th International Symposium on Materials in a Space Environment, 5th International Conference on Protection of Materials and Structures from the LEO Space Environment[C]. Arcachon-France, 2000.
  • 6МихайловММ, ДворецкийМИ. Особенностиизмененийоптическихсвойствортотитанатацинкаприраздельномисовместномпопарномоблученииэлектронами, протонамииэлектромагнитнымизлучением[J]. Неорганические Mатериалы, 1992, 28(7):1431-1436.
  • 7Johnson F S. The solar constant[J]. J Meterological, 1954, 11(6):431-439.
  • 8ГуревичММ, ИцкоЭФ, СереденкоММ. Оптическиесвойствалакокрасочныхпокрытий[M]. Л.:Химия, 1984. 80.
  • 9МихайловМ.МПрогнозированиеоптическойдеградациитерморегулирующихпокрытийкосмическихаппаратов[M]. Новосибирск: Наука, 1999. 55-72.
  • 10ВанСюйдун, ЛиЧуньдун, МихайловММ, ХеШиюй, ЯнДечжуан. Влияниеплотностипотока, потокаиэнергииэлектроновнаизменениеоптическихсвойствпокрытия ZnO+K2SiO3[J]. Изв. вузовФизика, 2000, 9:25-32.

共引文献4

同被引文献66

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部