期刊文献+

基于粗糙集理论的支撑向量机预测方法研究 被引量:15

Study of Forecasting Algorithm for Support Vector Machines Based on Rough Sets
下载PDF
导出
摘要 分析了粗糙集理论方法与支撑向量机方法两者各自的优势和互补性 ,探讨了粗糙集与支撑向量机的结合方法 ,然后提出了一种基于粗糙集数据预处理的支撑向量机预测系统。该系统利用粗糙集理论在处理大数据量、消除冗余信息等方面的优势 ,减少支撑向量机的训练数据 ,克服支撑向量机方法因为数据量太大 ,处理速度慢等缺点。将该系统应用于股票价格预测中 ,与 BP神经网络法和标准的支撑向量机方法相比 ,得到了较高的预测精度 ,从而说明了基于粗糙集理论的方法作为信息预处理的支撑向量机学习系统的优越性。 By analyzing the generalities and specialities of rough sets (RS) and support vector machines (SVM) in knowledge representation and process of classification, a minimum decision network combining RS with SVM in intelligence processing is investigated, and a kind of SVM system on RS is proposed for forceasting. Using RS theory on the advantage of dealing with great data and eliminating redundant information, the system reduces the training data of SVM, and overcomes the disadvantage of great data and slow speed. Finally, the system is used to forecast Shanghai Stock Exchange Index, and experimental results prove that the approach can achieve greater forecasting accuracy and generalization ability than the BP neural network and standard SVM.
出处 《数据采集与处理》 CSCD 2003年第2期199-203,共5页 Journal of Data Acquisition and Processing
关键词 支撑向量机 预测方法 粗糙集理论 BP神经网络 股票市场 股票价格预测 时间序列预测 rough sets theory support vector machines intelligence information processing forecasting
  • 相关文献

参考文献8

  • 1曾黄麟.粗集理论及其应用(修订版)[M].重庆:重庆大学出版社,1998..
  • 2曾黄麟,曾谦.基于粗集理论的神经网络[J].四川轻化工学院学报,2000,13(1):1-5. 被引量:41
  • 3Vapnik V N. The nature of statistical learning theory [M]. New York: Springer, 1995.12-38.
  • 4Pawlak Z. Rough sets [J]. International Journal of Information and Computer Science, 1982,11 : 241-256.
  • 5Chang Mingwei, Lin Chenjen, Weng R C. Analysis of nonstationary time series using support vector machines [A]. SVM2002, Niagara Falls [C].Canada,2002. 160-170.
  • 6Muller K R, Smola A J, Ratsch G, et al. Prediction time series with support vector machines[A]. Procof ICANN'97[C]. Springer LNCS 1327,1997.78-92.
  • 7Tay F E H, Cao Lijuan Cao. Application of support vector machines in financial time series forecasting[J]. Omega, 2001,29(2) :127-133.
  • 8Shevade S K, Keerthi S S, Bhattaeharyy C, et al.Improvements to SMO algorithm for SVM regression [J]. IEEE Trans on Neural Networks,2000,11(5):356-362.

二级参考文献2

共引文献51

同被引文献79

引证文献15

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部