期刊文献+

非消歧偏标记学习 被引量:3

Disambiguation-free partial label learning
原文传递
导出
摘要 偏标记学习是一类重要的弱监督机器学习框架.在该框架下,每个对象在输入空间由单个示例进行刻画,在输出空间与一组候选标记相对应,其中仅有一个标记为其真实标记.利用有歧义性的样本进行建模,直观的策略是对候选标记集合进行消歧,然而该策略会受到伪标记的影响,因此有必要考虑从非消歧的角度解决偏标记学习问题.本文将围绕基于消歧、非消歧策略的偏标记学习算法对该领域进行综述.首先,给出偏标记学习的定义以及其与其他相关学习框架的关系.然后对现有几种代表性基于消歧策略的偏标记学习算法进行介绍.接下来重点介绍我们提出的两种基于非消歧策略的偏标记学习算法.最后对本文进行总结并简要讨论进一步的研究方向. Partial label learning is an important weakly supervised machine learning framework.In partial label learning,each object is described by a single instance in the input space;however,in the output space,it is associated with a set of candidate labels among which only one is valid.An intuitive strategy is to disambiguate candidate labels,but this strategy tends to be misled by false positive labels;therefore,new disambiguationfree approaches need to be considered.In this paper,several algorithms are reviewed from the perspective of disambiguation and disambiguation-free strategies.First,the problem definition on partial label learning and its relationship with other related learning frameworks are given.Second,several representative partial label learning algorithms via the disambiguation strategy are introduced.Third,two of our proposed disambiguationfree algorithms are presented.Finally,the summary of this paper is given and possible future investigations on partial label learning are briefly discussed.
作者 张敏灵 吴璇 Min-Ling ZHANG;Xuan WU(School of Computer Science and Engineering,Southeast University,Nanjing 210096,China;Key Laboratory of Computer Network and Information Integration(Southeast University),Ministry of Educa-tion,Nanjing 210096,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2019年第9期1083-1096,共14页 Scientia Sinica(Informationis)
基金 国家重点研发计划(批准号:2018YFB1004300) 国家自然科学基金(批准号:61573104)资助项目
关键词 机器学习 弱监督学习 偏标记学习 候选标记 非消歧策略 machine learning weakly-supervised learning partial label learning candidate label disambiguation-free strategy
  • 相关文献

参考文献2

二级参考文献36

  • 1周志华.Multi-Instance Learning from Supervised View[J].Journal of Computer Science & Technology,2006,21(5):800-809. 被引量:12
  • 2Mitchell T M. Machine learning[,M]. New York: McGraw-Hill, 1997.
  • 3Pfahringer B. Learning with weak supervision: Charting the territory[C]//Keynote Talk at the 1st International Workshop on I.earning with Weak Supervision ( LAWS' 12, in conjunction with ACML' 12). Singapore : [ s. n. ], 2012.
  • 4Cour T, Sapp B, Taskar B. Learning from partial labels[J]. Journal of Machine Learning Research, 2011, 12: 1501-1536.
  • 5Cour T, Sapp B, Jordan C, et al. Learning from ambiguous labeled images[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, FL:[s. n. ], 2009: 919-926.
  • 6Zeng Z, Xiao S, Jia K, et al. Learning by associating ambiguously labeled images[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Portland, OR:[s. n. ], 2013: 708-715.
  • 7Jie L, Orabona F. Learning from candidate labeling sets[C]//Advances in Neural Information Processing Systems 23. Cam- bridge, MA: MIT Press, 2010: 1504-1512.
  • 8Liu L, Dietterich T. A conditional multinomial mixture model for superset label learning[C]//Advances in Neural Informa- tion Processing Systems 25. Cambridge, MA: MIT Press, 2012: 557-565.
  • 9Grandvalet Y. Logistic regression for partial labels[C]//Proceedings of the 9th International Conference on Information Pro- cessing and Management of Uncertainty in Knowledge-Based Systems. Annecy, France:[s. n. ], 2002: 1935-1941.
  • 10Jin R, Ghahramani Z. Learning with multiple labels[C]//Advances in Neural Information Processing Systems 15. Cam- bridge, MA: MIT Press, 2003: 897-904.

共引文献116

同被引文献13

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部