摘要
Concentrations and spatial distributions of organic carbon (OC) and elemental carbon (EC) in atmospheric particles were measured at 8 sites in four cities (Hong Kong, Guangzhou, Shenzhen and Zhuhai) of Pearl River Delta Region (PRDR), China during 2001 winter period and 2002 summer period. PM2.5 (particie diameter smaller than 2.5 um) and PM10 (particie diameter smaller than 10 um) samples were collected on pre-fired quartz filters with mini-volume samplers and analyzed using thermal optical reflectance (TOR) method. The average PM2.5and PM10 Ievel were 60.1 and 93.1 μg·m-3, respectively, with PM2.5 constituting 65.3% of the PM10 mass. The average OC and EC concentrations in PM2.5 were 12.0 and 5.1 μg·m-3, respectively, while those in PM10 were 16.0 and 6.5 μg·m-3, respectively. The carbo-naceous aerosol accounted for 37.2% of the PM2.5 and 32.8% of the PM10. The highest concentrations of OC and EC were observed at Guangzhou city in both vvinter and summer seasons. The average OC/EC ratios were 2.4 for PM2.5 and 2.5 for PM10, indicating the presence of secondary organic aerosols. The OC and EC in PRDR were found to be strongly correlated (correlation coefficients > 0.6), which implied that similar emission source contribute to the ambient carbon particles.
Concentrations and spatial distributions of organic carbon (OC) and elemental carbon (EC) in atmospheric particles were measured at 8 sites in four cities (Hong Kong, Guangzhou, Shenzhen and Zhuhai) of Pearl River Delta Region (PRDR), China during 2001 winter period and 2002 summer period. PM2.5 (particie diameter smaller than 2.5 um) and PM10 (particie diameter smaller than 10 um) samples were collected on pre-fired quartz filters with mini-volume samplers and analyzed using thermal optical reflectance (TOR) method. The average PM2.5and PM10 Ievel were 60.1 and 93.1 μg·m-3, respectively, with PM2.5 constituting 65.3% of the PM10 mass. The average OC and EC concentrations in PM2.5 were 12.0 and 5.1 μg·m-3, respectively, while those in PM10 were 16.0 and 6.5 μg·m-3, respectively. The carbo-naceous aerosol accounted for 37.2% of the PM2.5 and 32.8% of the PM10. The highest concentrations of OC and EC were observed at Guangzhou city in both vvinter and summer seasons. The average OC/EC ratios were 2.4 for PM2.5 and 2.5 for PM10, indicating the presence of secondary organic aerosols. The OC and EC in PRDR were found to be strongly correlated (correlation coefficients > 0.6), which implied that similar emission source contribute to the ambient carbon particles.
基金
This study is supported by China NSFC project(40205018)
Research Grants Council of Hong Kong(BQ-500)
G-V951 of the Hong Kong Polytechnic University.