摘要
利用陈金全教授的本征函数法计算了空间群链Pm3m(?) Pm3(?)P23的耦合系数,即母分系数.C—G(克莱布施-高登)系数是群不可约表示基组成高阶不可约表示基底的变换系数,而母分系数是由两个群链不可约表示基底组成大群不可约表示基的变换系数.最后的计算结果表明,用陈金全教授的本征函数法所求得的母分系数确实满足幺正、归一性,同时也证明了本征函数法对于求母分系数同样适用.
In this thesis has a strict meaning paper, Chen Jin-quans eigenfunction method is used to calculate the CFP (coefficients of fractional parentage) of Pm3m Pm3 P23 space group. We know that C-G (Clebsch-Gordan) coefficient is a transformation coefficient of basis of high order irreducible representation, which consists of basis of irreducible representation of groups, and CFP are transformation coefficients of basis of irreducible representation of big group consisting of basis of irreducible representation of two subgroup chains. Finally we got the result of the CFP of Pm3m Pm3 P23 space group which showed the CFP could be verified to confirm the unitary nature and orthonormality. So it proved that eigenfunction method also applies to calculating the CFP of space groups.
出处
《辽宁大学学报(自然科学版)》
CAS
2003年第3期209-211,共3页
Journal of Liaoning University:Natural Sciences Edition
关键词
子群链
祸合系数
母分系数
本征函数法
C—G系数
不可约表示
群表示论
量子力学
subgroup chain
coupling coefficient
CFP (coefficients of fractional parentage)
eigenfunc-tion
C-G (Clebsch-Gordan) coefficient
irreducible representation.