期刊文献+

多延迟微分方程θ-方法数值解稳定性

THE STABILITY OF θ -METHOD FOR DELAY DIFFERENTIAL EQUATION WITH SEVERAL DELAYS
下载PDF
导出
摘要 本文将研究多延迟微分方程数值解的稳定性 ,我们考虑如下线性试验方程 U′( t) =AU( t) + ∑mj=1Bj U( t- τj)二种 θ——方法的数值特征 ,其中 A,B1,… ,Bm为复矩阵 ,给出了二种θ—方法是 GPm This paper deals with the stability of numerical solution for differential-equations with several delays. By the two kinds of θ -method, we consider the following linear test equation U′(t)=AU(t)+∑mj=1B jU(t-τ j), where A,B 1,...,B m are complex matrixes. A sufficient and necessary condition for the GP m stability is given.
机构地区 哈尔滨工业大学
出处 《哈尔滨师范大学自然科学学报》 CAS 2003年第2期7-9,共3页 Natural Science Journal of Harbin Normal University
关键词 多延迟微分方程 线性Θ-方法 单腿θ-方法 数值解 渐近稳定性 Delay differential equation θ -method Asymptotic stability
  • 相关文献

参考文献9

  • 1刘明珠,邱深山,郑宏珍.滞后微分方程组数值解θ-方法P-稳定的充分必要条件[J].哈尔滨工业大学学报,1996,28(2):6-10. 被引量:1
  • 2王联.稳定性理论中第一临界情形的微分方程与微分差分方程的等价性问题[J].数学学报,1960,10:104-124.
  • 3Liu, M. Z. and Spijker, M. N. , The stability of the θ-methods in the numerical solution of delay differential equations. IMAJ. Numer. Anal. 1990,10,31-48.
  • 4Zennaro, M. , On the P-stability of one-step collocation for delay differential equations. TSNM. T4(1985),334-343.
  • 5Zennaro, M. , P- stability properties of Runge- Kutta methods for delay differential equations. Numer. Math. 1986,49,302-318.
  • 6In't Hout, K. J. and Spijker, M. N. , The stability of the θ-methods in the numerical solution of delay differential equations. Precedings of the International Semina NUMOIFF-5,Leipzig :Teubner Verlag, 1989.
  • 7Torekki, L. , Stability of numerical methods for delay differential equations. J. Comp. Appl. Math. 1989,25,15-26.
  • 8In't Hout, K. J. and Spijker, M. N. , Stability analysis of numerical methods for delay differential equations. Numer.Math. 1991,59,804-814.
  • 9Lancaster, P. and Tis menetsy, M. , The theory of matrices.Second edition, Academic Press. OHando. Sen Diego. New York, 1985.

二级参考文献1

  • 1刘明珠,IMA Journal of Numerical Analysis,1990年,10卷,31页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部