期刊文献+

汉语语音的非线性动力学特征及其降噪应用 被引量:2

Nonlinear characteristics of Chinese speech and its application in noise reduction
原文传递
导出
摘要 分析了汉语语音的相关维、最小嵌入维数以及重构相图。分析结果表明汉语语音具有混沌特征。根据这些非线性特征可以有效区分汉语中的浊音、清音和随机噪声,从而可以用于语音降噪。介绍了本地投影法混沌语音降噪的原理与算法,并利用该算法对一些典型的元音和辅音进行降噪,获得了较好的降噪效果。 Some invariants of nonlinear dynamics of Chinese speech are analyzed. The results reveal the chaotic characters in Chinese speech and the difference among voiced, unvoiced sound and random noise, which verify the feasibility of denoising Chinese speech using noise reduction algorithms for chaotic data. The results of denoising experiments show good effects on voiced and unvoiced sounds.
出处 《声学学报》 EI CSCD 北大核心 2003年第3期241-247,共7页 Acta Acustica
基金 国家杰出青年科学基金 国家自然科学基金资助项目
关键词 汉语 语音 非线性动力学特征 元音 辅音 噪声控制 混沌降噪 谱减法 Algorithms Chaos theory Dynamics Noise abatement Nonlinear systems
  • 相关文献

参考文献13

  • 1胡水清,徐歆,杜功焕.语音的短时关联维分析[J].声学技术,2000,19(3):150-151. 被引量:3
  • 2杨行竣 迟惠生.语音信号数字处理[M].北京:电子工业出版社,1995..
  • 3Steinecke I, Herzel H. Bifurcations in an asymmetric vocalfold model. J. Acous. Soc. Am., 1995; 97(3): 1874--1884.
  • 4Herzel H. Bifurcations and chaos in voiced signals. Appl.Mech. Rev., 1993; 46(2): 399---413.
  • 5Berry D A, Titze I R, Herzel H, Krischer K. Interpretation of biomechanical of normal and chaotic vocal fold oscillations with empirical eigenfunctions. J. Acous. Soc. Am.,1994; 95(6): 3595---3604.
  • 6Packard N H, Crutchfield J P, Farmer J D, Shaw R S. Geometry from a time series. Phys. Rev. Lett., 1980; 45(9):712--716.
  • 7Takens F. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence., 1981; 898(1): 365--381.
  • 8Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 1985; 57(3): 617--656.
  • 9Abarbanel H D I, Brown R, Sidorowich J J. The analysis of observed chaotic data in physical systems. Rev. Mod.Phys., 1993; 65(4): 1331--1392.
  • 10Hegger, Kantz H, Matassini L. Denoising human speech signals using chaoslike features. Phys. Rev. Lett., 2000;84(14): 3197--3200.

共引文献5

同被引文献17

  • 1陈伟兵,周凌宏,肖中举.耳蜗基底膜振动模型的建立与应用[J].中国医学物理学杂志,2007,24(3):221-223. 被引量:10
  • 2王俊国,周建中,付波,彭兵.基于Duffing振子的微弱信号混沌检测[J].电子器件,2007,30(4):1380-1383. 被引量:11
  • 3Singer A C, Womell G W, Oppenheim A V.Codebook prediction: A nonlinear signal modeling paradigm. Proceeding of International Conference on. Acoustics, Speech, Signal Processing, 1992,5:325- 328.
  • 4Thyssen J, Nielseny H, Hansen S D. Nonlinear short-term prediction in speech coding. ICASSP-94(1): 185-188.
  • 5Fainter J D, Sidorowich J J. Predicting chaotic tTime series. Physical Review Letters, 1987, 59(8): 845-848.
  • 6Casdagli M. Nonlinear prediction of chaotic time series. Physica D, 1989, 35 : 335- 356.
  • 7Packard N H, Crutchfield J P, Farmer J D, et al.Geometry from a time series. Physical Review Letters, 1980, 45(9): 712-716.
  • 8Takens F. Detecting strange attractors in turbulence. Dynamical Systenzs and Turbulence, 1981,898(1): 365-381.
  • 9Abarbanel H D I, Brown R R, Sidorowich J J, et al. Analysis of observed chaotic data. Reviews of Modem Physics, 1993, 4(65): 1 344-1 346.
  • 10Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction.Physical Review A, 1992,45:3 403-3 411.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部