期刊文献+

基于多尺度马尔可夫随机场的图像分割 被引量:4

Image Segmentation Based on Multiscale Markov Random Field
下载PDF
导出
摘要 The noniterative algorithm of multiscale MRF has much lower computing complexity and better result thanits iterative counterpart of noncausal MRF model, since it has causality property between scales, and such causality isconsistent with the character of images. Maximizer of the posterior marginals(MPM)algorithm of multiscale MRFmodel is presented for only one image can be obtained in image segmentation. EM algorithm for parameter estimate isalso given. Experiments demonstrate that comparing with iterative ones, the proposed algorithms have the character-istics of greatly reduced computing time and better segmentation results. This is more notable for large images. The noniterative algorithm of multiscale MRF has much lower computing complexity and better result than its iterative counterpart of noncausal MRF model, since it has causality property between scales, and such causality is consistent with the character of images. Maximizer of the posterior marginals (MPM)algorithm of multiscale MRF model is presented for only one image can be obtained in image segmentation. EM algorithm for parameter estimate is also given. Experiments demonstrate that comparing with iterative ones, the proposed algorithms have the characteristics of greatly reduced computing time and better segmentation results. This is more notable for large images.
出处 《计算机科学》 CSCD 北大核心 2003年第7期174-176,共3页 Computer Science
基金 国家自然科学基金(60133010) 教育部博士点基金
关键词 图像分割 图像像素 多尺度马尔可夫随机场 图像边缘 图像处理 Multiscale markov random field(MRF),Noniterative algorithm,Iterative algorithm, Maximizer of the posterior marginals (MPM), Expectation maximization (EM)
  • 相关文献

参考文献6

  • 1Krishnamachari S, Chellapa R. Multiresolution Gauss-Markov random field models for texture segmentation. IEEE Transactions on Image Processing, 1997,6(2) :251-267.
  • 2Basseville M,Benveniste A,Chou K C,et al. Modeling and estimation of multiresolution stochastic processes. IEEE Transactions on Information Theory, 1992, 38(3):766-784.
  • 3Laferte J-M, Perez P, Heitz F. Discrete Markov image modeling and inference on the quadtree. IEEE Transactions on Image Processing,2000,9 (3) : 390-404.
  • 4Bouman C A, Shapiro M. A multiscale random field model for Bayesian image segmentation. IEEE Transactions on Image Processing, 1994,3(2) : 162-177.
  • 5Crouse M S,Nowak R D,Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing, 1998,46(4) : 886- 902.
  • 6Dempster A P,Laird N M,Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B, 1977,39(1) : 1 -38.

同被引文献44

  • 1Abraham Duarte, Angel Sanchez,Felipe Fernandez, et al. Improving hnage Segmentation Quality through Effective Region Merging Using a Hierarchical Social Met Heuristic [ J ]. Pattern Recognition Letters, 2006 (27) : 1239-1251.
  • 2Liu X, Wang D. Image and Texture Segmentation Using Local Spectral Histograms [J]. IEEE Transactions on Image Processing, 2006, 15 (10) : 3066-3077.
  • 3Ho SY, Lee K Z. Design and Analysis of an Efficient Evolutionary Image Segmentation Algorithm [J]. The Journal of VLSI Signal Processing, 2003, 35( 1 ) : 29-42.
  • 4Leahy R. An Optimal Graph Theoretic Approach to Data Clustering: Theory and its Application to hnage Segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (11) : 1101-1113.
  • 5Shi J, Malk J. Normalized Cuts and Image Segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22 (8) : 888- 905.
  • 6Ding C, He X, Zha H, et al. A Min-max Cut Algorithm for Graph Partitioning and Data Clustering[ C ] //Proceedings of IEEE International Conference on Data Mining. San Jose :IEEE,2001 : 107- 114.
  • 7Veksler O. Image Segmentation by Nested Cuts [ C ] / / Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hihon Head Island :IEEE,2000: 339-344.
  • 8Li X, Tian Z. Optimum Cut-based Clustering [J]. Signal Processing, 2007, 87 (11): 2491- 2502.
  • 9Pedro F Felzenszwalb, Daniel P Huttenlocher. Efficient Graph-based Image Segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2) : 167-181.
  • 10Ming Zhang, Reda Alhajjt. Improving the Graph-based Image Segmentation Method [ C ]//Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06). Arlington: IEEE ,2006:6174524.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部