摘要
利用几何不等式的理论与方法研究n维单形与其旁心生成的单形体积之间关系,将二维Klamkin不等式向高维推广,建立了n维欧氏空间En中n维单形体积的一类几何不等式,从而获得了n维情形的Klamkin不等式.
In this paper, the relation between volumes of a ndimensional simplex and its escenters simplex by the theory and method of geometric inequalities are studied. 2dimensional Klamkin's inequality is extended to higherdimensional case. Some geometric inequalities for nsimplexes in E\+n are established, and the ndimensional Klamkin inequality is obtained.
出处
《沈阳工业大学学报》
EI
CAS
2003年第4期354-356,共3页
Journal of Shenyang University of Technology
基金
安徽省教育厅科研基金资助项目(2003kj080)
安徽省学术技术带头人后备人选科研资助项目(2002HBL30)
关键词
单形
体积
旁心
不等式
simplex
volume
escenter
inequality