期刊文献+

基于离散正交小波变换的红外图像去噪方法 被引量:7

Method of infrared image denoising based on discrete orthogonal wavelet transform
原文传递
导出
摘要 提出红外图像去噪方法,将小波变换与广义交叉确认原理相结合,在噪声方差未知的前提下,只利用红外图像的输入数据就可以确定所要求的渐近最优阈值。对红外图像进行离散正交小波变换后,分别对各个分解层的高频子带利用所提出的方法进行迭代去噪,使各个高频子带分别收敛于其最大信噪比。实验结果表明,该方法在有效地去除噪声的同时,能较好地保持红外图像的细节信息。算法在性能指标和视觉质量上均优于Donoho提出的小波阈值去噪方法、Johnstone提出经过调整的小波阈值法和传统的中值滤波法。 A kind of infrared image threshold denoising method is given. It combines wavelet transform with generalized cross validation. An asymptotically optimal threshold can be determined, without knowing the variance of noise, only using the known input data. After making discrete orthogonal wavelet transform to an infrared image, denoising is done in the high frequency subbands of each decomposition level respectively, so that the maximum signal\|noise\|ratio can be obtained in the high frequency subbands respectively. According to the experimental result ,the given algorithm can reduce the noise of infrared image effectively ,while it also keeps the detail information of infrared image well. As to performance and visual quality, the algorithm is better than the wavelet thresholding given by Donoho, the modified wavelet thresholding given by Johnstone and the traditional median value filtering method.
出处 《红外与激光工程》 EI CSCD 北大核心 2003年第4期401-406,共6页 Infrared and Laser Engineering
基金 国防兵器预研基金资助项目
关键词 离散正交小波变换 广义交叉确认 阈值去噪 Discrete orthogonal wavelet transform Generalized cross validation Denoising by threshold
  • 相关文献

参考文献12

  • 1严洪,涂丹,沈振康.自适应背景对消方法[J].信号处理,1998,14(3):285-288. 被引量:4
  • 2王玲,宋国乡.具有无边界失真的多小波[J].电子与信息学报,2001,23(7):693-699. 被引量:5
  • 3李宏贵,李兴国,张奇,李国桢,罗正发.非线性滤波器在红外图像增强中的应用[J].数据采集与处理,1999,14(3):302-306. 被引量:11
  • 4Donoho D L. De-noising via soft thresholding. Technical report 409[R]. California:Stanford University, 1992.
  • 5Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994,81:425-455.
  • 6Donoho D L. Denoising by soft thresholding [J]. IEEE Transon Information Theory, 1995,41(3):613-627.
  • 7Donoho D L, Johnstone I M. Threshold selection for wavelet shrinkage of noisy data [A]. Inz Proc 16th Annual International Conference of IEEE Engineering in Medicine and Biology Society[C]. Baltimore, Maryland. 1994,1. A24-A25.
  • 8Chang S G, Bin Yu, Martin Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising[J].IEEE Trans on Image Processing, 2000,9(9) :1522-1531.
  • 9Donoho D L, Johnstone I M. Wavelet shrinkage., asymptopia?[J]. Journal of the Royal Statistical Society, Series B, 1995,57(2) :301-369.
  • 10Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intellegence, 1989,11(7) : 674-693.

二级参考文献8

  • 1[1]Jiang Qingtang, On the design of multifilter banks and orthonormal multiwavelet banks, IEEE Trans. on Signal Processing, 1998, SP-46(12), 3292-3302.
  • 2[2]T.N.T. Goodman, S. L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc., 1994, 342(1), 307-324.
  • 3[3]J.S. Geronimo, D. P. Hardin, P. R. Massopust, Fractal functions and wavelet expansions basedon several sealing functions, J. Approx. Theory, 1994, 78(3), 373-401.
  • 4[4]I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf., Ser. in Appl. Math., SIAM,Philadelphia, PA, 1992, 251-253.
  • 5[5]C.K. Chui, J-a. Lian, A study of orthonormal multi-wavelets, Appl. Numer. Math., 1996, 20(3),273-298.
  • 6[6]X.G. Xia, A new prefilter design for discrete multiwavelet transforms, IEEE Trans. on SignalProcessing, 1998, SP-46(6), 1558-1570.
  • 7[7]T.D. Bui, Chen G, Translation-invariant denoising using multiwavelets, IEEE Trans. on SignalProcesying, 1998, SP-46(12), 3414-3420.
  • 8[8]J. Lebrun, M. Vetterli, Balanced multiwavelets theory and design, IEEE Trans. on Signal Pro-cessing, 1998, SP-46(4), 1119-1125.

共引文献16

同被引文献63

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部