期刊文献+

LEAST-SQUARES METHOD-BASED FEATURE FITTING AND EXTRACTION IN REVERSE ENGINEERING 被引量:3

LEAST-SQUARES METHOD-BASED FEATURE FITTING AND EXTRACTION IN REVERSE ENGINEERING
下载PDF
导出
摘要 The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud. The main purpose of reverse engineering is to convert discrete data pointsinto piecewise smooth, continuous surface models. Before carrying out model reconstruction it issignificant to extract geometric features because the quality of modeling greatly depends on therepresentation of features. Some fitting techniques of natural quadric surfaces with least-squaresmethod are described. And these techniques can be directly used to extract quadric surfaces featuresduring the process of segmentation for point cloud.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期163-166,共4页 中国机械工程学报(英文版)
基金 This project is supported by Research Foundation for Doctoral Program of Higher Education, China (No.98033532)
关键词 reverse engineering feature extraction least-squares method segmentationand surface fitting reverse engineering feature extraction least-squares method segmentationand surface fitting
  • 相关文献

参考文献7

  • 1Steven C Chapra Raymond P Canale.工程中的数值方法(第三版)[M].北京:科学出版社,2000..
  • 2Tamas Varady, Ralph R Martin, Jordan Coxt. Reverse engineering of geometric models -- an introduction. Computer Aided Design, 1997, 29(4):255-268.
  • 3Saeid Motavalli. Review of reverse engineering approaches. Computers and.Engng, 1998, 35(1/2): 25~28.
  • 4David Marshall, Gabor Lukacs, Ralph Martin. Robust segmentation of primitives from range data in the presence of geometric degeneracy. IEEE Trans. Pattern Analysis and Machine Intelligence, 2001, 23(5): 304~314.
  • 5Pratt V. Direct least-squares fitting of algebraic surfaces. In: Computer Graphics Proc. GGRAPH'87. ACM. 1987. 21:27-31.
  • 6Cao X P, Neelima Shrikhande, Hu G Z. Approximate orthogonal distance regression method for fitting quadric surfaces to range data. Pattern Recognition, 1994:781-796.
  • 7Frank P Fcrrie, Jean Lagarde, Peter Whaite. Darboux frames, snakes, and super-quadrics: geometry from the bottom up. IEEE Trans. Part Anal. Machine Intell. 1993, 15(8): 771-784.

同被引文献40

  • 1柯映林,刘云峰,范树迁,陈曦,李岸.基于特征的反求工程建模系统RE-SOFT[J].计算机辅助设计与图形学学报,2004,16(6):799-811. 被引量:23
  • 2LI Jiangxiong KE Yinglin LI An ZHU Weidong.PDGI-BASED REGULAR SWEPT SURFACE EXTRACTION FROM POINT CLOUD[J].Chinese Journal of Mechanical Engineering,2006,19(3):322-329. 被引量:3
  • 3Várady T. Reverse engineering of geometric models: An introduction[J]. Computer-Aided Design, 1997, 29(4): 255~268
  • 4Várady T, Martin R R, Cox J. Special issue: Reverse engineering of geometric models[J]. Computer-Aided Design, 1997, 29(4): 253~254
  • 5Benko P, Martin R R, Várady T. Algorithms for reverse engineering boundary representation models[J]. Computer-Aided Design, 2001, 33(11): 839~851
  • 6Tai Chingchih, Huang Mingchih. The processing of data points basing on design intent in reverse engineering[J]. International Journal of Machine Tools & Manufacture, 2000, 40(12): 1913~1927
  • 7Huang Mingchih, Tai Chingchih. The pre-processing of data points for curve fitting in reverse engineering[J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(11): 635~642
  • 8Woo H, Kang E, Wang S, et al. A new segmentation method for point cloud data[J]. International Journal of Machine Tools & Manufacture, 2002, 42(3): 167~178
  • 9Huang Jiangbing, Menq ChiaHsiang. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points[J]. IEEE Transactions on Robotics and Automation, 2001, 17(3): 268~279
  • 10Yang M, Lee E. Segmentation of measured point data using a parametric quadric surface approximation[J]. Computer-Aided Design, 1999, 31(7): 449~457

引证文献3

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部