摘要
Based on the simulations of 22 CMIP5 models in combination with socio-economic data and terrain elevation data,the spatial distribution of risk levels of flood disaster and the vulnerability to flood hazards in China are projected under the RCP8.5 for the near term period(2016–2035), medium term period(2046–2065) and long term period(2080–2099),respectively. The results show that regions with high flood hazard levels are mainly located in Southeast China, while the vulnerability to flood hazards is high in eastern China. Under the RCP8.5 greenhouse gas emissions scenario, future high flood risk levels will mainly appear in the eastern part of Sichuan, in major part of East China, and in the provinces of Hebei, Beijing, and Tianjin. The major cities in Northeast China, some areas in Shaanxi and Shanxi, as well as the coastal areas in southeastern China will also encounter high flood risks. Compared with the baseline period, the regional flood risk levels will increase towards the end of the 21 st century, although the occurrences of floods change little. Due to the coarse resolution of the climate models and the indistinct methodology for determining the weight coefficients,large uncertainty still exists in the projection of flood risks.
Based on the simulations of 22 CMIP5 models in combination with socio-economic data and terrain elevation data,the spatial distribution of risk levels of flood disaster and the vulnerability to flood hazards in China are projected under the RCP8.5 for the near term period(2016–2035), medium term period(2046–2065) and long term period(2080–2099),respectively. The results show that regions with high flood hazard levels are mainly located in Southeast China, while the vulnerability to flood hazards is high in eastern China. Under the RCP8.5 greenhouse gas emissions scenario, future high flood risk levels will mainly appear in the eastern part of Sichuan, in major part of East China, and in the provinces of Hebei, Beijing, and Tianjin. The major cities in Northeast China, some areas in Shaanxi and Shanxi, as well as the coastal areas in southeastern China will also encounter high flood risks. Compared with the baseline period, the regional flood risk levels will increase towards the end of the 21 st century, although the occurrences of floods change little. Due to the coarse resolution of the climate models and the indistinct methodology for determining the weight coefficients,large uncertainty still exists in the projection of flood risks.
基金
supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201306019)
the National Natural Science Foundation of China (41275078)
the Grant Projects of China Clean Development Mechanism Fund (121312)
the Climate Change Foundation of the China Meteorological Administration (CCSF201339)