期刊文献+

具有耗散项修正的Burgers-KdV方程波前解的持续性

Persistence of travelling fronts of the modified Burgers-Kd V equation with small long-range diffusion
下载PDF
导出
摘要 对具有耗散项修正的Burgers-Kd V方程波前解进行了研究,运用几何奇异摄动理论证明,在充分小耗散情况下其波前解是持续的。 From geometric singular perturbation point of view, we prove that travelling fronts of the modified Burgers-Kd V equation persist under the sufficiently small dissipation.
作者 吴影 傅仰耿
出处 《齐齐哈尔大学学报(自然科学版)》 2015年第4期63-68,共6页 Journal of Qiqihar University(Natural Science Edition)
基金 国家自然科学基金(11401229)
关键词 具有耗散项修正的Burgers-Kd V方程 几何奇异摄动理论 波前解 持续性 modified Burgers-Kd V equation with fourth-order derivative geometric singular perturbation theory travelling fronts persistence
  • 相关文献

参考文献10

  • 1Yanggeng Fu,Zhengrong Liu.Persistence of travelling fronts of KdV–Burgers–Kuramoto equation[J]. Applied Mathematics and Computation . 2010 (7)
  • 2Ahmet Bekir.On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation[J]. Communications in Nonlinear Science and Numerical Simulation . 2008 (4)
  • 3Hilmi Demiray.A note on the exact travelling wave solution to the KdV–Burgers equation[J]. Wave Motion . 2003 (4)
  • 4P. Ashwin,M. V. Bartuccelli,T. J. Bridges,S. A. Gourley.Travelling fronts for the KPP equation with spatio-temporal delay[J]. Zeitschrift für angewandte Mathematik und Physik . 2002 (1)
  • 5Engui Fan,Hongqing Zhang.A note on the homogeneous balance method[J]. Physics Letters A . 1998 (5)
  • 6Fu, Zuntao,Liu, Shikuo,Liu, Shida.New exact solutions to the KdV-Burgers-Kuramoto equation. Chaos Solitons Fractals . 2005
  • 7Guo, Boling,Chen, Hanlin.Homoclinic orbit in a six-dimensional model of a perturbed higher-order nonlinear Schr?dinger equation. Communications in Nonlinear Science and Numerical Simulation . 2004
  • 8Shigui Ruan,Dongmei Xiao.Stability of steady states and existence of travelling waves in a vector-disease model. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics . 2004
  • 9Neil Fenichel.Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations . 1979
  • 10A. Kolmogorov,I. Petrovski,N. Piscounov.Etude de l’’equation de la diffusion avec croissance de laquantite de matiere at son application a un probleme biologique. Bull. Univ. Moskou, ser. Internat, Sec A . 1937

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部