摘要
A new approach for the solution of truss shape and topology optimization problems under local and global stability constraints is proposed.By employing the cross sectional areas of each bar and some shape parameters as topology design variables,the difficulty arising from the jumping of buckling length phenomenon can be easily overcome without the necessity of introduc- ing the overlapping bars into the initial ground structure.Therefore computational efforts can be saved for the solution of this kind of problem.By modifying the elements of the stiffness matrix using Sigmoid function,the continuity of the objective and constraint functions with respect to shape design parameters can be restored to some extent.Some numerical examples demonstrate the effectiveness of the proposed method.
A new approach for the solution of truss shape and topology optimization problems under local and global stability constraints is proposed.By employing the cross sectional areas of each bar and some shape parameters as topology design variables,the difficulty arising from the jumping of buckling length phenomenon can be easily overcome without the necessity of introduc- ing the overlapping bars into the initial ground structure.Therefore computational efforts can be saved for the solution of this kind of problem.By modifying the elements of the stiffness matrix using Sigmoid function,the continuity of the objective and constraint functions with respect to shape design parameters can be restored to some extent.Some numerical examples demonstrate the effectiveness of the proposed method.
基金
Project supported by the National Natural Science Foundation of China (Nos.200112023 and 10032030).