摘要
本文研究非线性差分方程△2xn+qnxn+1=anφ(xn+m)ψ(xn+k)+bn的解的渐近表示.设对应的齐次方程非振动,建立条件使方程的任意解可表成(zn+yn+zno(1))的形式,其中zn和yn分别是对应齐次方程的主解和非主解.
This paper is concerned with the asymptotic expression of solutions to the nonlinear difference equation
Under the assumption that the corresponding homogeneous equation is nonoscillatory, sufficient conditions are established such that every solution of the equation is expressed as (zn + yn + zno(1)), where zn and yn are principal and nonprincipal solutions of the homogeneous equation, respectively.
出处
《系统科学与数学》
CSCD
北大核心
2003年第3期315-320,共6页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10071043)