期刊文献+

用隐式多项式平面曲线拟合数据点

To Fit Data Point with Implicit Polynomial polynomial 2D Curves
下载PDF
导出
摘要 本文提出了一种方法 ,用隐式多项式曲线拟合数据点 ,使数据点到多项式曲线的距离控制在相对较小的范围内。将拟合问题中非线性的目标函数和约束条件转化成线性的形式 ,利用线性规划原理 ,求出逼近于数据点的隐式多项式。该方法不需要求出原始数据点处的导数 ,具有简单、可靠。 In this paper a method is proposed to fit data point with implicit polynomial 2D curves,to make the distance from the data points to the curve within the relatively smaller range. We change the nonlinear restrictions and objective function into their linear form as to coefficients of implicit polynomial, and work out the implicit polynomial approximated to the data points. This method is simple, robust and fast without requirement of derivatives provided by data points.
出处 《机床与液压》 北大核心 2003年第4期216-218,215,共4页 Machine Tool & Hydraulics
关键词 隐式多项式曲线 线性规划 拟合 数据点 Implicit polynomial curve Linear programming Fitting
  • 相关文献

参考文献6

  • 1G. Taubin. Estimation of Planar Curves, Surfaces and Nonplanar Space Curves Defined by Implicit Equations, with Applications to Edge and Range Image Segmentation.IEEE Transaction on Pattern Analysis and Machine Intelligence, November 1991.
  • 2G. Taubin, F. Cukierman, S. Sullivan, J. Ponce and D. J.Kriegman. Parameterized Families of Polynomials for Bounded Algebraic Curve and Surface Fitting. IEEE Transactions on Pattern Analysis and machine Intelligence, March 1994.
  • 3D. Keren, D. B. Cooper and J. Subrahmonia. Describing Complicated Objects by Implicit Polynomials. IEEE Transactions on Pattern Analysis and machine Intelligence, January1994.
  • 4T. W. Sederberg and D. C. Anderson. Implicit Representation of Parametric Curves and Surfaces. Computer Vision,Graphics, and Image Processing, 28, 1984.
  • 5J. Bloomenthal, Polygonization of Implicit Surfaces. Computer Aided Geometric Design, 4 (5) : 341 - 355, 1988.
  • 6Z. Lei and D. B. Cooper. New, Faster, More Controlled Fitring of Implicit Polynomial 2D Curves and 3D Surfaces to Data. IEEE Conference on Computer Vision and Pattern Recognition, (San Francisco), June 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部