期刊文献+

Bayes网络学习的MCMC方法 被引量:4

MCMC approach to Bayesian networks learning
下载PDF
导出
摘要 基于Bayes统计理论,提出了一种从数据样本中学习Bayes网络的Markov链Monte Carlo(MCMC)方法。首先通过先验概率和数据样本的结合得到未归一化的后验概率,然后使用此后验概率指导随机搜索算法寻找“好”的网络结构模型。通过对Alarm网络的学习表明了本算法具有较好的性能。 A Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest. In many cases, the authors hoped to learn Bayesian networks from data. Using the Markov chain Monte Carlo (MCMC) approach, this paper proposed a Bayesian statistical method for learning Bayesian networks from data, in terms of network structures and parameters. Prior specification and stochastic search were two important components of this approach. The combination of prior probability and data samples induced a posterior distribution that would guide the stochastic search towards the network structures having the maximal posterior probability. The performance of this approach is illustrated by the learning of the Alarm network from data.
作者 岳博 焦李成
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第4期582-584,588,共4页 Control Theory & Applications
基金 国家自然科学基金(60073053)
关键词 Bayes统计理论 概率推理算法 MCMC方法 BAYES网络 模型选择 随机搜索 网络学习 Bayesian networks Markov chain Monte Carlo model selection stochastic search
  • 相关文献

参考文献7

  • 1..http://www. cs. huji. ac. il/labs/compbio/Repository/Datasets/alarm/alarm. htm,.
  • 2COOPER G, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning, 1992,9(3) :309 - 374.
  • 3BUNTINE W. Theory refinement on Bayesian networks [A]. Proc of 7 th Conf Uncertainty Artificial Intelligence [ C ]. Los Angeles,CA, 1991:652 - 660.
  • 4CHIPMAN H, GEORGE E, McCULLOCH R. Bayesian CART model search [J]. J of the American Statistical Association, 1998,93(4):935 -948.
  • 5HECKERMAN D, GEIGER D, CHICKERING D. Learning Bayesian networks: The combination of knowledge and statistical data [J].Machine Learning, 1995,20(2) : 197 - 243.
  • 6KHALFALLAH F, MELLOULI K. Optimized algorithm for learning Bayesian network from data [ A ]. Proc of the European Conf on Symbolic and Quantitative Approach to Reasaning and Uncertainty[C]. London: Cambridge Press, 1999.
  • 7LIU J, CHANG K, ZHOU J. Learning Bayesian networks with a hybrid convergent method [J]. IEEE Trans Systems, Man, Cybernetics, 1999,29(2) :436 - 449.

同被引文献41

引证文献4

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部