期刊文献+

基于小波包变换的自适应均衡算法 被引量:17

Adaptive Equalization Algorithm Based on Wavelet Packet Transform
下载PDF
导出
摘要 本文在推导出离散正交小波包变换对应的正交矩阵的基础上 ,提出了基于小波包变换的自适应均衡算法 ,并分析了这种均衡算法的性能 ,给出了计算机仿真结果 .另外 ,为了使基于小波包变换的自适应均衡算法应用于实际 。 Adaptive equalization algorithm based on wavelet packet transform is proposed in the paper, upon the basis given orthogonal matrices corresponding to discrete orthogonal wavelet packet transform. The performance of the algorithm is an and we prove the analysis results, from computer simulation. Additionally, in order to apply wavelet packet transform based adaptive equalization algorithm to various fields, the approach to minimize computational complexity is given.
作者 黄奎 吕锐
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第8期1205-1208,共4页 Acta Electronica Sinica
基金 国家重点基础研究规划项目 (973) (No .G1 9990 32 9) 教育部重点项目数字AM系统基础研究 (No.JKZH0 2 0 34)
关键词 自适应均衡 小波包变换 优化算法 正交矩阵 Computer simulation Wavelet transforms
  • 相关文献

参考文献8

  • 1刘丰,徐金标,王新梅.基于正交小波的判决反馈均衡算法[J].电子学报,1998,26(10):4-8. 被引量:4
  • 2石庆华,程时昕.基于PR-QMF理论的判决反馈均衡器[J].通信学报,2001,22(1):116-121. 被引量:2
  • 3曾召华,刘贵忠,马社祥.基于正交小波变换的瞬变步长LMS自适应滤波算法[J].通信学报,2001,22(4):123-128. 被引量:17
  • 4Matlab Help Document d Wavelet Toolbox(Dealing with Border Distortion) [ M/CD] :283 - 292.
  • 5F, Beaufays. Transform domain adaptive filters: an analytical approach[J]. lEEE Trans. on Signal Processing, 1995,43(2) :422 - 431.
  • 6Attallah, S. Wavelet transform-domain I.MS algorithm with mininum,computational complexity[A] .In the Proceedings of Intemational conference telecommunications [ C ]. Cheju, Korea, 1999.66 - 70.
  • 7Attallah, S. The wavelet transform-domain I.MS adaptive filter in the context of equalization[A]. In the Proceedings of International Conferenee Telecoaamaticatiom [ C ]. Cheiu, Korea, 1999.55 - 59.
  • 8Fahang-Boroujeny B, S Gazor. Selection of othonomal transforms for improving performance of transform domain normalized LMS algorithm[J]. IEE Proceedings, 1992,139(5) :327 - 335.

二级参考文献4

共引文献19

同被引文献84

引证文献17

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部