期刊文献+

分配BZ-格的粗糙近似 被引量:1

The Rough Approximation of Distributive BZ Lattice
下载PDF
导出
摘要 讨论了分配BZ 格的区间结构及其粗糙近似算子的性质 .对于分配BZ 格中任一元素a ,利用刻画必然性测度和可能性测度的模态一元算子ν和 μ ,可以得到a的粗糙近似 (ν(a) ,μ(a) ) .该文证明了对于任意给定的一个分配BZ 格 ,都可以由ν和 μ这一对近似算子诱导一个粗糙代数 .最后 ,通过实例说明必然性测度和可能性测度模态一元算子可以刻画不确定规划问题的必然最优解和可能最优解 . In this paper, interval structure of distributive BZ lattices and properties of rough approximation operators are discussed. For any element a in distributive BZ lattices, the rough approximation ( ν(a),μ(a ))of a is obtained by using two modal like unary operators ν and μ ( ν for necessity and μ for possibility). It is proved that a rough algebra can be induced from a distributive BZ lattice by means of rough operator pair denoted by ( ν,μ ). Finally, necessary optimal solutions and possibly optimal solutions of uncertain programming are characterized by modal like unary operators which is called necessity and possibility measures, respectively, an illustrative example is given.
出处 《计算机学报》 EI CSCD 北大核心 2003年第9期1130-1136,共7页 Chinese Journal of Computers
基金 国家自然科学基金 ( 69972 0 6) 陕西省自然科学基金 ( 2 0 0 1SL0 8)资助
关键词 粗糙集理论 机器学习 知识获取 分配BZ-格 粗糙近似 distributive BZ lattices modal like unary operators rough approximation rough algebras
  • 相关文献

参考文献8

  • 1祝峰,何华灿.粗集的公理化[J].计算机学报,2000,23(3):330-333. 被引量:51
  • 2孙辉,刘大有,李文.粗集公理组的极小化[J].计算机学报,2002,25(2):202-209. 被引量:14
  • 3Yao Y Y. Constructive and algebraic methods of the theory of rough sets. Journal of Information Sciences, 1998, 109:21-47.
  • 4Yao Y Y. Relational interpretations of neighborhood operators.and rough set approximation operators. Information Sciences,1998, 111:239-259.
  • 5Liu T Y, Liu Q. Rough approximation operators: Axiomaticrough set theory. In:Ziarko W P ed. Rough Sets,Fuzzy Sets and Knowledge Discovery. London: Springer-Verlag, 1994.256 - 260.
  • 6Cattaneo G, Giuntini R, Pilla R. BZMVau Algebras andstonian MV-algebras applications to fuzzy sets and rough approximations. Fuzzy Sets and Systems, 1999, 108 - 201 -222.
  • 7Wong S K M, Wang L S, Yao Y Y. On modeling uncertainty with interval structures. Computational Intelligence, 1995, 112 : 406-426.
  • 8Inuiguchi M, Sakawa M. Possible and necessary optimality testsin possibilistic linear programming problems. Fuzzy Sets andSystems, 1994, 67:29-46.

二级参考文献8

  • 1[1]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data. Dordrecht:Kluwer Acasemic Publishers, 1991. 9-32
  • 2[2]Yao Y Y et al. A review of rough set models. In: Lin T Y et al ed. Rough Setsand Data Mining: Analysis for Imprecise Data. Boston: Kluwer Academic Publishers,1997. 47-75
  • 3[3]Lin T Y, Liu Q. Rough approximate operators: Axiomaticrough set theory. In:Ziarko W P ed. Rough Sets, Fuzzy Sets and Knowledge Discovery. London:Springer-Verlag, 1994. 256-260
  • 4[5]Popkorn S. First Steps in Model Logic. New York: Cambridge University Press,1994. 13-21
  • 5Zhu Feng,Proceedings of the Fourth International Conferenceon High-Performance Computing,2000年
  • 6Lin T Y,Rough Sets,Fuzzy Setsand Knowledge Discovery,1994年,256页
  • 7苗夺谦,王珏.粗糙集理论中知识粗糙性与信息熵关系的讨论[J].模式识别与人工智能,1998,11(1):34-40. 被引量:138
  • 8祝峰,何华灿.粗集的公理化[J].计算机学报,2000,23(3):330-333. 被引量:51

共引文献55

同被引文献4

  • 1李福川,宋晓秋.区间代数理论扩展[J].系统工程与电子技术,2005,27(4):720-722. 被引量:2
  • 2Yao Y, Lingras P J. Interpretations of belief functions in the theory of rough sets. Information Sciences, 1998, 104(1): 81-106.
  • 3Wong S K M, Wang L S, Yao Y Y. On modeling uncertainty with interval structures. Computa- tional Intelligence, 1995, 11(2): 406-426.
  • 4Cattaneo G, Giuntini R, Pilla R. BZMV- algebras and stonian MV-algebras (applications to fuzzy sets and rough approximations). Fuzzy Sets and Systems, 1999, 108(1): 201-222.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部