摘要
本文在平面应变条件下,对粘弹性圆形巷道和衬砌的耦合问题进行分析,衬砌(粘弹或弹性的)是在巷道开挖后,或巷道形成后经过一段时间蠕变才加上的。使用积分型粘弹本构关系——Boltzmann记忆积分求出围岩和衬砌的位移,然后根据它们交界面处的连续条件,得到位移围岩和衬砌交界面上支护反力为未知量的积分方程。最后,对一些具体情况由积分方程求得支护反力,从而得到围岩和衬砌的位移和应力,并对其进行了分析。
An analysis of the complex of viscoelastic country rock compled with viscoelastic (or elastic)lining in a circular drift under plane strain condition is given by this paper. Stresses and displacemet as expressed in segmental functions in this paper are attributed to two factors, creep deformation and volumetric deformation. A controlled integral equation of lining pressure based on the integral
viscoelastic constitutive law (-Boltzmann' s superposition principle)is
derived.which is applicabe to all types of country rock and lining meterials.With other known date giver, the equation can be used to work out the solution of the lining pressure P(t), with which the stress and displacement of the country rock and lining can be obtained.
出处
《南方冶金学院学报》
1992年第1期83-90,共8页
Journal of Southern Institute of Metallurgy
关键词
围岩
应力
岩层移动
衬砌
粘弹性
surrounding rock stress, rock strata movement, lining, viscoelastity.