期刊文献+

多物理场耦合烧结超细铜粉的致密化研究 被引量:1

Densification of Fine Copper Powder by Multi-physics Fields Coupling Sintering
下载PDF
导出
摘要 为研究多物理场耦合烧结超细铜粉的致密化过程,以平均晶粒度为0.5μm的超细铜粉为载体,利用Gleeble-1500 D热模拟机进行烧结实验,并将其与平均晶粒度为30μm的粗铜粉的致密化过程进行对比,同时研究了在0.5μm的超细铜粉加入少量30μm的粗铜粉后对其致密化过程的影响。实验发现,使用0.5μm超细铜粉和混合铜粉烧结后的相对密度高于30μm粗铜粉烧结后的相对密度,其中混合粉末获得的相对密度最高为94.61%。结果表明:多物理场耦合烧结后,超细铜粉可能由于其较差的导电性而阻碍烧结的顺利进行;粗细混合铜粉烧结后的致密度高于单一粒度铜粉烧结后的致密度。 The densification behaviors of copper( Cu) powders with a average particle size of 0. 5 μm and 30 μm by multi-physics fields coupling sintering were investigated respectively and compared with the densification behavior of Cu powders of mixed particle sizes. The sintering test was carried out using a Gleeble-1 500 D thermal simulation instrument. The effects of minor addition of coarse copper powder( 30 μm) to fine copper powder( 0. 5 μm) on sintering densification process was also discussed. It was found that the relative densities of the compact produced using fine copper powders( 0. 5 μm) and powders of different particle sizes( 0. 5,30 μm) were higher than the relative density of the compact fabricated using coarse copper powder( 30 μm). The highest relative density obtained was 94. 61% for compact using powders of different particle sizes as the starting material. The results indicated that densification process of the fine powders may be hindered during the sintering process due to their poor electrical conductivity and more dense sample are likely to be produced using Cu powders of different sizes.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2016年第S1期193-197,共5页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(51575369)
关键词 多物理场耦合烧结 超细铜粉 致密化 multi-physics fields coupling sintering fine copper powder densification
  • 相关文献

参考文献3

二级参考文献22

  • 1Feng,Keqin,杨屹,沈保罗,林慧敏,何洪.电场作用下压坯密度对Fe-Ti-C体系低温燃烧合成的影响[J].稀有金属材料与工程,2005,34(3):479-482. 被引量:13
  • 2[1]GERMAN R M,HENS K F.Key issues in powder injection molding[J].Ceramic Bulletin,1991,70(8):1294-1302.
  • 3[2]GERMAN R M.Technological barriers and opportunities in powder injection molding[J].Powder Metall Int,1993,25(4):165-169.
  • 4[3]DREWERS R C.Cost effective production of MIM components[J].Advances in Powder Metallurgy,1991,38(2):297-306.
  • 5[4]WHITE R D.State of the P/M industry in North America[J].Powder Metall Int,1999,35(5):25-29.
  • 6[5]HAUCK PAUL A.Powder injection molding:Current and long term outlook[J].International Journal of Powder Metallurgy,2000,36(3):29-30.
  • 7[6]KISHOR M KULKARNI.Future looking bright for PIM[J].Metal Powder Report,2000,55(10):40-42.
  • 8[11]CHEN X.Improvements in conventional PM parts with bimodal powder mixtures[J].Metal Powder Report,1997,52(6):40.
  • 9[12]CAI L,GERMAN R M.Powder injection molding using water-atomized 316L stainless steel[J].The International Journal of Powder Metallurgy,1995,31(3):257-263.
  • 10Chen S P, Meng Q S, Zhao J F, et al. Synthesis and characterization of TiB2-Ni-Ni3Al-CrNi alloy graded material by field-activated combustion [J]. Journal of Alloys and Compounds, 2009,476(2): 889-893.

共引文献12

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部