摘要
本文,我们考虑了脉冲微分方程.正周期解的存在唯一性与全局吸引性,通过使用不动点定理,建立了该方程唯一正周期解的存在性与全局吸引性的充分条件.特别地,我们给出x是其他正解的全局吸引子.我们的结果推广和改进了已有文献结果.
In this paper,we consider an impulsive differential equation.By using a fixed point theorem,some criteria are estabUshed for the existence of the unique positive w-periodic solution x of the equation.In particular,we give the conclusion of x is a global attractor of all other positive solutions.Our work extends and improves some known results.
出处
《生物数学学报》
2015年第3期405-414,共10页
Journal of Biomathematics
基金
supported by the Youth Innovation Foundation of Shanxi Agricultural Universit(2011009)
National Nature Science Foundation of P.R.China(No.11471197),(No.201402319)
Shanxi Provincial Nature Science Foundation of China(No.2014011005-1)
Shanxi Provincial Programs for Science and Technology(No.20120311001-2)
关键词
脉冲微分方程
正周期解
存在性
全局吸引性
唯一性
不动点定理
Impulsive differential equation
Positive periodic solution
Existence
Global attractivity
Uniqueness
Fixed point theorem