期刊文献+

脉冲微分方程正周期解的存在唯一性与全局吸引性(英文) 被引量:1

Existence and Global Attractivity of Unique Positive Periodic Solution for an Impulsive Differential Equation
原文传递
导出
摘要 本文,我们考虑了脉冲微分方程.正周期解的存在唯一性与全局吸引性,通过使用不动点定理,建立了该方程唯一正周期解的存在性与全局吸引性的充分条件.特别地,我们给出x是其他正解的全局吸引子.我们的结果推广和改进了已有文献结果. In this paper,we consider an impulsive differential equation.By using a fixed point theorem,some criteria are estabUshed for the existence of the unique positive w-periodic solution x of the equation.In particular,we give the conclusion of x is a global attractor of all other positive solutions.Our work extends and improves some known results.
出处 《生物数学学报》 2015年第3期405-414,共10页 Journal of Biomathematics
基金 supported by the Youth Innovation Foundation of Shanxi Agricultural Universit(2011009) National Nature Science Foundation of P.R.China(No.11471197),(No.201402319) Shanxi Provincial Nature Science Foundation of China(No.2014011005-1) Shanxi Provincial Programs for Science and Technology(No.20120311001-2)
关键词 脉冲微分方程 正周期解 存在性 全局吸引性 唯一性 不动点定理 Impulsive differential equation Positive periodic solution Existence Global attractivity Uniqueness Fixed point theorem
  • 相关文献

参考文献12

  • 1Wan-Tong Li,Yong-Hong Fan.Existence and global attractivity of positive periodic solutions for the impulsive delay Nicholson’s blowflies model[J]. Journal of Computational and Applied Mathematics . 2006 (1)
  • 2Guirong Liu,Aimin Zhao,Jurang Yan.Existence and global attractivity of unique positive periodic solution for a Lasota–Wazewska model[J]. Nonlinear Analysis . 2005 (8)
  • 3Hai-Feng Huo,Wang-Tong Li,Xinzhi Liu.Existence and global attractivity of positive periodic solution of an impulsive delay differential equation[J]. Applicable Analysis . 2004 (12)
  • 4Yuji Liu,Weigao Ge.Stability theorems and existence results for periodic solutions of nonlinear impulsive delay differential equations with variable coefficients[J]. Nonlinear Analysis . 2004 (3)
  • 5Wan-Tong Li,Hai-Feng Huo.Existence and global attractivity of positive periodic solutions of functional differential equations with impulses[J]. Nonlinear Analysis . 2004 (6)
  • 6K Gopalsamy,Sergei I Trofimchuk.Almost Periodic Solutions of Lasota–Wazewska-type Delay Differential Equation[J]. Journal of Mathematical Analysis and Applications . 1999 (1)
  • 7Jurang Yan,Aimin Zhao.Oscillation and Stability of Linear Impulsive Delay Differential Equations[J]. Journal of Mathematical Analysis and Applications . 1998 (1)
  • 8J.R. Graef,C. Qian,P.W. Spikes.Oscillation and global attractivity in a periodic delay equation. Canadian Mathematical Bulletin . 1996
  • 9Daqing Jiang,Junjie Wei.Existence of positive periodic solutions to nonautonomous delay differential equations. Chin. Ann. Math., Ser. A . 1999
  • 10D. Guo.Some fixed point theorems and applications. Nonlinear Analysis Theory Methods Applications . 1986

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部