期刊文献+

媒体报道影响下Filippov传染病模型的研究 被引量:2

A Study of Filippov Epidemic Model Influenced by Media Report
原文传递
导出
摘要 将感染者数量作为实施媒体宣传的指标,利用阈值策略建立了一类具有非连续媒体影响的SIR传染病模型,分析了滑模区域、切点及边界平衡点分歧产生的条件,讨论了真(假、伪)平衡点及边界平衡点的存在性及稳定性.最后,通过数值模拟验证理论结果. Considering the number of infected individuals as the index for media report and using threshold strategy, a class of SIR epidemic model with discontinuous media effects is formulated. We analyze the existence of sliding mode region, tangent equilibrium and boundary equilibrium bifurcation, and discuss the stability of the real, virtual, pseudo-equilibrium and boundary equilibrium. Finally, numerical simulations are carried out to support the theoretical results.
出处 《生物数学学报》 2018年第1期98-110,共13页 Journal of Biomathematics
基金 国家自然科学基金青年基金项目(11201277) 陕西省自然科学基金项目(2015JM011)
关键词 传染病模型 滑模动力学 稳定性 阈值策略 边界平衡点分歧 Epidemic models Sliding mode dynamics Stability Threshold strategy Boundary equilibrium bifurcation
  • 相关文献

参考文献2

二级参考文献24

  • 1Czene K, Reilly M, Hall P, Hartman M. A constant risk for familial breast cancer? a popula- tion-based family study[ J ]. Breast Cancer Res, 2009, 11 (3) : R30.
  • 2Meyer-Rienecker H, Buddenhagen F. Incidence of multiple sclerosis: a periodic orstable phe- nomenon[J]. JNeurol, 1988, 235(4) : 241-244.
  • 3Neaigus A, Jenness S M, Hagan H, Murrill C S, Torian L V, Wendel T, Gelpi-Acosta C. Esti- mating HIV incidence and the correlates of recent infection in venue-sampled men who have sex with men in New York city[J]. AIDS Behav, 2012, 16(3) : 515-524.
  • 4Liu R, Wu J, Zhu H. Media/psychological impact on multiple outbreaks of emerging infec- tious diseases[J]. Comput Math Methods Med, 2007, 8(3) : 153-154.
  • 5Xiao D, Ruan S. Global analysis of an epidemic model with nonmonotone incidence rate [ J J. Math Biosci, 2007, 208(2): 419-429.
  • 6Li B, Yuan S, Zhang W. Analysis on an epidemic model with a ratio-dependent nonlinear inci- dence rate[J]. Int JBiomath, 2011,4(2) : 227-239.
  • 7Sun C, Yang W, Arinoa J, Khan K. Effect of media-induced social distancing on disease transmission in a two patch setting[ J]. Math Biosci, 2011, 2:}0(2) : 87-95.
  • 8Cui J, Sun Y, Zhu H. The impact of media on the control of infectious diseases[J]. Journal of Dynamics and Differential Equations, 2008, 20( 1 ) : 31-53.
  • 9Tchuenche J M, Bauch C T. Dynamics of an infectious disease where media coverage influ- ences transmission[ J]. ISRNBiomathematics, 2012, 2012: Article ID 581274, l0 Pages. doi: 10. 5402/2012/581274.
  • 10Zou W, Xie J. An SI epidemic model with nonlinear infection rate and stage structure [J]. Int JBiomath, 2009, 2(1) : 19-27.

共引文献40

同被引文献9

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部