摘要
本文主要讨论带收获率的Lotka-Volterra捕食者-食饵交错扩散模型的Turing不稳定性.我们证明,线性自扩散和SKT型非线性自扩散都不能引起该模型的稳定性变化,但线性交错扩散和SKT型交错扩散具有不稳定化作用,从而产生交错扩散导致的Turing斑图.并通过数值例子辅助说明了这些分析结果.
In this paper, the Turing instability of a Lotka — Volterra predator-prey model with cross-diffusion and harvesting rate are discussed. It is proved that neither linear self-diffusion nor nonlinear SKT self-diffusion can change the stability of this model, but Turing pattern exist in the linear cross-diffusion and SKT cross-diffusion systems. Meanwhile,to illustrative the analysis results, some numerical examples are also included.
作者
张丽丽
麻作军
伏升茂
ZHANG Li-li;MA Zuo-jun;FU Sheng-mao(School of Mathematics and Statistics, Longdong University, Qingyang Gansu 745000 China;College of Mathematics and Statistics, Northwest Normal University, Lanzhou Gansu 730070 China)
出处
《生物数学学报》
2018年第2期244-256,共13页
Journal of Biomathematics