期刊文献+

带收获率的Lotka-Volterra捕食者-食饵交错扩散模型的Turing不稳定性 被引量:1

Turing Instability in a Lotka-Volterra Predator-Prey Model with Cross-Diffusion and Harvesting Rate
原文传递
导出
摘要 本文主要讨论带收获率的Lotka-Volterra捕食者-食饵交错扩散模型的Turing不稳定性.我们证明,线性自扩散和SKT型非线性自扩散都不能引起该模型的稳定性变化,但线性交错扩散和SKT型交错扩散具有不稳定化作用,从而产生交错扩散导致的Turing斑图.并通过数值例子辅助说明了这些分析结果. In this paper, the Turing instability of a Lotka — Volterra predator-prey model with cross-diffusion and harvesting rate are discussed. It is proved that neither linear self-diffusion nor nonlinear SKT self-diffusion can change the stability of this model, but Turing pattern exist in the linear cross-diffusion and SKT cross-diffusion systems. Meanwhile,to illustrative the analysis results, some numerical examples are also included.
作者 张丽丽 麻作军 伏升茂 ZHANG Li-li;MA Zuo-jun;FU Sheng-mao(School of Mathematics and Statistics, Longdong University, Qingyang Gansu 745000 China;College of Mathematics and Statistics, Northwest Normal University, Lanzhou Gansu 730070 China)
出处 《生物数学学报》 2018年第2期244-256,共13页 Journal of Biomathematics
关键词 Lotka-Volterra捕食者-食饵模型 收获率 扩散 交错扩散 Turing不稳定性 Lotka-Volterra predator-prey model harvesting rate diffusion crossdiffusion Turing instability
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部