期刊文献+

半空间上与高阶Laplace算子相对应的积分方程组(英文)

A System of Integral Equation on Half Space Related to a Higher-order Laplacian
原文传递
导出
摘要 利用积分形式的移动平面法,给出n维上半空间R_+~n积分方程组{u(x)rn+(1|x-y|n-a-1|x*-y|n-a)(γ1up1(y)+u1vp2(y)+βup3(y)vp4(y)dyv(x)=rn+(1|x-y|n-a-|x*-y|n-a)(γ1uq1(y)+u2vq2(y)+β2uq3(y)vq4(y)dy}解的单调性和旋转对称性,其中0<α<n,λ_i,μ_i,β_i≥0(i=1,2)是非负常数,pi,qi(i=1,2,3,4)满足适当的假设,x~*=(x_1,x_2,…,x_(n-1),-x_n)是点x关于超平面x_n=0的反射点.本文的结果推广了n维欧氏空间R^n中的结果. The monotonicity and rotational symmetry for solutions to the following integral system in the n-dimensional upper half Euclidean space R_+~n= {x =(x_1,x_2,…,x_n) ∈R^n | x_n > 0},{u(x)rn+(1|x-y|n-a-1|x*-y|n-a)(γ1up1(y)+u1vp2(y)+βup3(y)vp4(y)dyv(x)=rn+(1|x-y|n-a-|x*-y|n-a)(γ1uq1(y)+u2vq2(y)+β2uq3(y)vq4(y)dy} are given by moving plane method in integral forms,where 0 < a < n,λ_i,μ_i,β_i > 0 i = 1,2)are nonnegative constants,p_i and q_i(i = 1,2,3,4) satisfy some suitable assumptions,and x~* =(x_1,x_2,…,x_(n-1,-x_n)) is the reflection of the point x about the hyperplane x_n= 0.Results in this paper generalize results on the n-dimensional Euclidean space R^n.
作者 唐素芳
出处 《数学进展》 CSCD 北大核心 2014年第6期942-950,共9页 Advances in Mathematics(China)
基金 Supported by Chinese National Science Fund for Distinguished Young Scholars(No.11101319,No.11201081,No.11202035) the Foundation of Shaanxi Statistical Research Center(No.13JD04) the Foundation of Shaanxi Province Education Department(No.14JK1276)
关键词 积分方程组 积分形式的移动平面法 旋转对称 上半空间 system of integral equations moving plane method in integral forms rotational symmetry upper half space
  • 相关文献

参考文献11

  • 1DOU JingBo,QU ChangZheng,HAN YaZhou.Symmetry and nonexistence of positive solutions to an integral system with weighted functions[J].Science China Mathematics,2011,54(4):753-768. 被引量:8
  • 2Yanqin Fang,Wenxiong Chen.A Liouville type theorem for poly-harmonic Dirichlet problems in a half space[J].Advances in Mathematics.2012(5)
  • 3Ran Zhuo,Dongyan Li.A system of integral equations on half space[J].Journal of Mathematical Analysis and Applications.2011(1)
  • 4Chao Ma,Wenxiong Chen,Congming Li.Regularity of solutions for an integral system of Wolff type[J].Advances in Mathematics.2010(3)
  • 5Dongyan Li,Ran Zhuo.An integral equation on half space[J].Proceedings of the American Mathematical Society.2010(8)
  • 6Yajing Zhang.A Liouville type theorem for polyharmonic elliptic systems[J].Journal of Mathematical Analysis and Applications.2006(1)
  • 7WenxiongChen,CongmingLi,BiaoOu.Classification of solutions for an integral equation[J].Comm Pure Appl Math.2005(3)
  • 8Jiaqun Liu,Yuxia Guo,Yajing Zhang.Liouville-type theorems for polyharmonic systems in R N[J].Journal of Differential Equations.2005(2)
  • 9YanYan Li,Lei Zhang.Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations[J].Journal d’Analyse Mathématique.2003(1)
  • 10Juncheng Wei,Xingwang Xu.Classification of solutions of higher order conformally invariant equations[J].Mathematische Annalen.1999(2)

二级参考文献16

  • 1邓东皋,颜立新.Fractional integration associated with second order divergence operators on R^n[J].Science China Mathematics,2003,46(3):355-363. 被引量:3
  • 2YanYan Li,Lei Zhang.Liouville-type theorems and harnack-type inequalities for semilinear elliptic equations[J]. Journal d’Analyse Mathématique . 2003 (1)
  • 3Donggao Deng,Lixin Yan.Fractional integration associated with second order divergence operators on Rn[J]. Science in China Series A: Mathematics . 2003 (3)
  • 4James Serrin.A symmetry problem in potential theory[J]. Archive for Rational Mechanics and Analysis . 1971 (4)
  • 5Chen W,Li C,Ou B.Classification of solutions for a system of integral equations. Communications in Partial Differential Equations . 2005
  • 6Chen W,,Li C,Ou B.Qualitative properties of solutions for an integral equation. Discrete Contin Dyn Syst . 2005
  • 7Hang F B.On the integral systems related to Hardy-Littlewood-Sobolev inequality. Mathematical Research Letters . 2007
  • 8Zhang Y.A Liouville type theorem for polyharmonic elliptic systems. Journal of Mathematical Analysis and Applications . 2007
  • 9W. Chen,C. Li,B. Ou.Classification of solutions for an integral equation. Communications in Pure Applied Mathematics . 2006
  • 10Jiaqun Liu Yuxia Guo and Yajing Zhang.Liouville-type theorems for polyharmonic systems in. Journal of Differential Equations . 2006

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部