期刊文献+

On Generalized Algebraic Cone Metric Spaces and Fixed Point Theorems 被引量:1

On Generalized Algebraic Cone Metric Spaces and Fixed Point Theorems
原文传递
导出
摘要 In this paper, the author first introduces the concept of generalized algebraic cone metric spaces and some elementary results concerning generalized algebraic cone metric spaces. Next, by using these results, some new fixed point theorems on generalized(complete) algebraic cone metric spaces are proved and an example is given. As a consequence, the main results generalize the corresponding results in complete algebraic cone metric spaces and generalized complete metric spaces. In this paper, the author first introduces the concept of generalized algebraic cone metric spaces and some elementary results concerning generalized algebraic cone metric spaces. Next, by using these results, some new fixed point theorems on generalized(complete) algebraic cone metric spaces are proved and an example is given. As a consequence, the main results generalize the corresponding results in complete algebraic cone metric spaces and generalized complete metric spaces.
作者 Qing MENG
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2019年第3期429-438,共10页 数学年刊(B辑英文版)
基金 supported by the National Natural Science Foundation of China(Nos.11871303,11371222,11271224) the China Postdoctoral Science Foundation(No.2018M642633) A Project of Shandong Province Higher Educational Science and Technology Program(No.J18KA238)
关键词 Generalized ALGEBRAIC CONE METRIC space CANONICAL DECOMPOSITION Fixed point Generalized algebraic cone metric space Canonical decomposition Fixed point
  • 相关文献

参考文献2

二级参考文献26

  • 1Huang, L. G., Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings. Y. Math. Anal. App., 332, 1468-1476 (2007).
  • 2Ilic, D., Rakocevic, V.: Common fixed points for maps on cone metric space. J. Math. Anal. Appl., 341(2), 876-882 (2008).
  • 3Abbas, M., Jungck, G.: Common fixed point results for noncommuting mappings without continuity in cone metric spaces. J. Math. Anal. Appl., 341(1), 416-420 (2008).
  • 4Xu, H. K.: Diametrically contractive mappings. Bulletin of the Australian Mathematical Society, 70(3), 463-468 (2004).
  • 5Deimling, K.: Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
  • 6Alghamdi, M. A., Alnafei, S. H., Radenovid, S. and Shahzad, N., Fixed point theorems for convex contrac- tion mappings on cone metric spaces, Math. Comput. Modelling, 54, 2011, 2020-2026.
  • 7Banach, S., Sur les op@rations dans les ensembles abstraits et leur application aux @quations int@grales, Fund. Math., 3, 1922, 133-181.
  • 8Chatterjee, S. K., Fixed point theorems, Rend. Acad. Bulgare Sc., 25, 1972, 727-730.
  • 9CiriS, Lj. B., A generalization of Banach's contraction principle, Proc. Arner. Math. Soc., 45, 1974, 267- 273.
  • 10Fisher, B., Quasicontractions on metric spaces, Proc. Amer. Math. Soc., 75, 1979, 321-325.

共引文献9

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部