期刊文献+

一类异构捕食-食饵退化模型正解的存在性 被引量:5

Existence of positive solutions for a predator-prey degenerate model in heterogeneous environment
下载PDF
导出
摘要 研究了一类空间非齐次环境下的捕食-食饵扩散模型。在食饵弱增长情形下,利用分歧理论给出了两个半平凡解附近正解的存在性,并刻画了整体结构;在食饵强增长情形下,通过度理论和正则摄动理论给出了正解存在的充分条件:λ∈(0,min{λ1D(Ω0),1/m3}),μ∈(λm1/1-λm3,M]。鉴于空间环境的非齐次性和退化因素的存在,通过数值算例验证了相应理论结果。 A predator-prey diffusion model in heterogeneous environment is researched.For the case of weak growth of prey,the existence of positive solutions are obtained near two semi-trivial solutions by using the bifurcation theory;moreover,the global structure are given.Secondly,for the case of strong growth of prey,the sufficient conditions:λ∈(0,min{λ1D(Ω0),1/m3}),μ∈(λm1/1-λm3,M]for the existence of positive solutions are showed by the degree theory and the regular perturbation theory.Considering the spatial heterogeneity and the influence of the degradation factor,some simulations are done in order to verify the theoretical results.
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期13-18,共6页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11271236) 中央高校基本科研业务费专项资金项目(GK201302025 GK201303008 GK201401004)
关键词 扩散 空间非齐次 分歧理论 度理论 存在性 diffusion spatial heterogeneity bifurcation theory degree theory existence
  • 相关文献

参考文献9

  • 1E.N. Dancer.Multiple fixed points of positive mappings.[J]. Journal für die reine und angewandte Mathematik (Crelles Journal) . 2009 (371)
  • 2Gaihui Guo,Jianhua Wu.Multiplicity and uniqueness of positive solutions for a predator–prey model with B–D functional response[J]. Nonlinear Analysis . 2009 (3)
  • 3Rui Peng,Mingxin Wang.Uniqueness and stability of steady states for a predator-prey model in heterogeneous environment[J]. Proceedings of the American Mathematical Society . 2007 (3)
  • 4Yihong Du,Junping Shi.Allee effect and bistability in a spatially heterogeneous predator-prey model[J]. Transactions of the American Mathematical Society . 2007 (9)
  • 5Yihong Du,Sze-Bi Hsu.A diffusive predator–prey model in heterogeneous environment[J]. Journal of Differential Equations . 2004 (2)
  • 6Beddington JR.Mutual interference between parasites or predators and its effect on searching efficiency. The Journal of Animal Ecology . 1975
  • 7Crandall MG,Rabinowitz PH.Bifurcation from simple eigenvalues. Journal of Functional Analysis . 1971
  • 8DeAngelis DL,Goldstein RA,O’Neill RV.A model for trophic interaction. Ecology . 1975
  • 9Dancer E N.On the indices of fixed points of mappings in cones and applications. Journal of Mathematical Analysis and Applications . 1983

共引文献4

同被引文献32

  • 1Kar T K, Chattopadhyay S K. A focus on long-run sus- tainability of a harvested prey predator system in the presence of alternative prey[J]. Comptes Rendus Biolo- gies, 2010, 333(11).. 841-849.
  • 2Narayan K L, Ramacharyulu N C P. A prey-predator model with an alternative food for the predator, harves- ting of both the species and with a gestation period for interaction[J]. International Journal of Open Problems Computer Science and Mathematics, 2008, 1 ( 1 ) : 71-79.
  • 3Reddy K M, Narayan K L. A prey-predator model withan alternative food for the predator and optimal harves- ting of the prey[J]. Advances in Applied Science Re- search, 2011, 2(4): 451-459.
  • 4Kar T K, Ghosh B. Sustainability and optimal control of an exploited prey predator system through provision of alternative food to predator[J]. Biosystems, 2012, 109 (2) .. 220-232.
  • 5Jaeduck J, Ni Weiming, Tang Moxun. Global bifurca- tion and structure of turing patterns in the 1-D Lengyel- Epstein model [J]. Journal of Dynamical Differential Equations, 2004, 16(2): 297-320.
  • 6Smoller J. Shock waves and reaction diffusion equations [M]. New York: Springer-Verlag, 1999.
  • 7钟承奎.非线性泛函分析引论[M].兰州:兰州大学出版社,2004:104-105.
  • 8Wu Jianhua. Global bifurcation of coexistence state for the competition model in the chemostat[J]. Nonlinear Annals Serial A: Theory Methods, 2000, 39(7): 817-835.
  • 9解玉龙,李艳玲.一类互惠模型正解的存在性[J].西北师范大学学报(自然科学版),2007,43(6):6-10. 被引量:4
  • 10LI S B,WU J H,DONG Y.Uniqueness and stability of apredator-prey model with C-M functional response[J].Computers&Mathematics with Applications,2015,69:1080-1095.

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部