期刊文献+

Hilbert空间中的K-g-框架的性质 被引量:8

Characterizations of K-g-Frames in Hilbert Spaces
原文传递
导出
摘要 在复Hilbert空间中定义了K-g-框架与K-g-Riesz基,探讨K-g-框架与g-框架的一些性质差别,并给出了K-g-Riesz基的等价刻画.利用分析与框架理论上的方法和技巧,研究了复Hilbert空间中K-g-框架与K-g-Riesz基扰动的稳定性,得到了K-g-框架与K-g-Riesz基满足扰动稳定性的充分条件. We introduce the concepts of K-g-frames and K-g-Riesz bases in complex Hilbert spaces and study the essential distinctions between a K-g-frame and a g-frame.We give a characterization of a K-g-frames and an equivalent characterization of a K-g-Riesz basis in complex Hilbert spaces.Lastly,by using the analytical methods and techniques in frame theory,we obtain some sufficient conditions for the stability of perturbation of K-g-frames and K-g-Riesz bases.
作者 周燕 朱玉灿
出处 《数学学报(中文版)》 CSCD 北大核心 2014年第5期1031-1040,共10页 Acta Mathematica Sinica:Chinese Series
基金 数学天元基金资助项目(11226099) 福建省自然科学基金资助项目(2012J01005) 福州大学科技发展基金(2012-XY-21 2012-XQ-29) 科研启动基金资助项目(022410)
关键词 K-框架 K-g-框架 K-g-Riesz基 K-frames K-g-frames K-g-Riesz bases
  • 相关文献

参考文献10

  • 1周燕,朱玉灿.K-g-框架与子空间对偶g-框架[J].数学学报(中文版),2013,56(5):799-806. 被引量:9
  • 2Yan Jin WANG Yu Can ZHU~(1))Department of Mathematics,Fuzhou University,Fuzhou 350002,P. R. China.G-Frames and g-Frame Sequences in Hilbert Spaces[J].Acta Mathematica Sinica,English Series,2009,25(12):2093-2106. 被引量:14
  • 3Yu Can ZHU.Characterizations of g-Frames and g-Riesz Bases in Hilbert Spaces[J].Acta Mathematica Sinica,English Series,2008,24(10):1727-1736. 被引量:38
  • 4Xiangchun Xiao,Yucan Zhu,Laura G?vru?a.Some Properties of K -Frames in Hilbert Spaces[J].Results in Mathematics.2013(3)
  • 5Wenchang Sun.G-frames and g-Riesz bases[J].Journal of Mathematical Analysis and Applications.2005(1)
  • 6Emmanuel J.Candès,David L.Donoho.New tight frames of curvelets and optimal representations of objects with piecewise C<sup>2</sup> singularities[J].Comm Pure Appl Math.2003(2)
  • 7Roderick B Holmes,Vern I Paulsen.Optimal frames for erasures[J].Linear Algebra and Its Applications.2003
  • 8Jiu Ding.New perturbation results on pseudo-inverses of linear operators in Banach spaces[J].Linear Algebra and Its Applications.2002
  • 9R. G. Douglas.On majorization, factorization, and range inclusion of operators on Hilbert space[J].Proceedings of the American Mathematical Society.1966(2)
  • 10R. J. Duffin,A. C. Schaeffer.A class of nonharmonic Fourier series[J].Transactions of the American Mathematical Society.1952(2)

二级参考文献40

  • 1Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 2Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 3Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003
  • 4Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001)
  • 5Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007)
  • 6Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006)
  • 7Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707- 1718 (2007)
  • 8Li, C. Y., Cao, H. X.: Xd frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361-1366 (2006)
  • 9Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl., 322(1), 437-452 (2006)
  • 10Sun, W.: Stability of g-frames. J. Math. Anal. Appl., 326(2), 858-868 (2007)

共引文献46

同被引文献19

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部