期刊文献+

单变量线性控制系统中H_∞熵的信息论意义

Information theoretic interpretation for H_∞ entropy in SISO linear control systems
下载PDF
导出
摘要 从考察具有外加随机噪声的单变量线性控制系统中的信息传输出发,研究了干扰输入和输出间的互信息率,并得出了互信息率与最小熵H∞控制理论中的性能函数——系统闭环传递函数H∞熵之间的关系,指出闭环传递函数的H∞熵是系统抑制干扰的可达性能(以互信息率为指标函数)的上界,探讨了控制系统中H∞熵的信息论意义.在此基础上,利用H∞熵的特性对具有外加随机噪声的不确定性系统和参数摄动不确定性系统的控制性能进行了比较,从而为利用信息论的概念和方法研究参数摄动不确定系统探索了有效的途径. Uncertain SISO linear control systems with additive noise were investigated using the measure of Shannon mutual information rate. The relation between the H∞ entropy of system closed-loop transfer function, which was the performance index of the minimum entropy H∞ control method, and the mutual information rate of stochastic disturbance input and system output was derived within the framework of information transmission. This relation describes an upper bound of disturbance rejection performance measured by the mutual information rate, and gives new information theoretic interpretation for H∞ entropy. Based on this relation, performances of two kinds of uncertain systems, systems with additive noise and these with parameter perturbation, were also compared. The derived results enable study of uncertain systems with parameter perturbation using information theoretic concepts and methods.
作者 章辉 孙优贤
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第5期517-520,共4页 Journal of Zhejiang University:Engineering Science
关键词 单变量线性控制系统 H∞熵 信息论 随机噪声 参数摄动 互信息率 信息传输 Closed loop control systems Entropy Transfer functions Uncertain systems
  • 相关文献

参考文献10

  • 1章辉 孙优贤.随机自适应控制的信息论方法[J].控制与决策,1995,10(6):519-524.
  • 2MUSTAFA D,GLOVER K. minimum entropy H∞ control, lecture notes in control and information sciences,Vol. 146[M]. Berlin, Heidelberg: Springer Verlag,1990.
  • 3BOYD S. Entropy and random feedback [A]. Blondel V D eds. Open Problems in Mathematical Systems and Control Theory[C]. London: Springer Verlag, 1999.
  • 4FRIDMAN E, SHAKED U. Robust H∞ minimum entropy static output-feedback control of singularly perturbed systems [J]. Automatic, 2000, 36: 1181-1188.
  • 5ZHOU K. Essential of robust control [M]. New Jersey:Prentice-Hall, Inc. , 1998.
  • 6STOORVOGEL A A, SCHUPPEN J H Van. System identification with information theoretic criteria[A].Bittanti S, et al eds. Identification Adaptation, Learning[C]. Berlin:Springer, 1996. 289-- 338.
  • 7WANG H. Minimum entropy control of non-Gaussian dynamic stochastic systems [J]. IEEE Trans Automatic Control, 2002, AC--47(2) : 398--403.
  • 8IHARA S. Information theory for continuous systems[M]. Singapore:World Scientific Publishing Co. Pte.Ltd. , 1993.
  • 9PINSKER M S. Information and information stability of random variables and processes [M]. San Francisco:Holden-Day, Inc, 1964.
  • 10LJUNG L. System identification: Theory for the User, 2nd edition[M]. New Jersey : Prentice-Hall, 1999.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部