期刊文献+

基于气化煤油喷注的RBCC燃烧室亚燃模态燃烧组织研究 被引量:3

Research on Ramjet-Mode Combustion Organization by Using Vaporized Kerosene Injection in RBCC Combustor
原文传递
导出
摘要 针对RBCC发动机亚燃模态进行主动冷却的情况下,煤油发生气化后喷入燃烧室的燃烧组织开展研究。在亚燃模态低来流总温条件下,使用小流量富燃一次火箭高温射流作为引导火焰可以实现支板喷注二次燃料的可靠点火和稳定燃烧,当煤油喷注前加热到气化/超临界态时,燃烧室最高压力相比于室温液态煤油提高约10%左右。当关闭一次火箭后,利用凹腔成功实现火焰稳定,而使用室温液态煤油喷注时,凹腔内无法实现火焰稳定。通过数值模拟获得了不同喷注方案的燃烧室燃烧流场特征和燃烧组织过程,为进一步优化燃烧室的性能提供依据。结果分析表明通过合理布置燃料支板喷注位置,由燃料支板下游集中的燃料热释放使得气流在扩张燃烧室构型中实现"热力壅塞",通过燃料分配实现燃烧室内合理的燃烧释热分布,使RBCC发动机亚燃模态完成高效燃烧组织。 Considering the active cooling requirement of RBCC engine under ramjet mode,researches on combustion organization based on vaporized kerosene injection in RBCC combustor have been performed.Under the low total temperature of incoming airflow condition at ramjet mode,the reliable ignition and stable combustion of secondary kerosene fuel by using low mass flowrate fuel-rich primary rocket plume as piloting flame has been accomplished.Moreover,the peak pressure in the combustor by injecting supercritical kerosene increased about 10%in comparison of room temperature kerosene.Meanwhile,when primary rocket was closed,flameholding was only achieved by using supercritical kerosene injection.The CFD simulation has been employed to obtain the detailed information of flowfield characteristics and combustion organization in RBCC combustor under different fuel injection strategies,which provides fundamental basis for further optimizing engine performance.The results indicate that the thermal coking in the expansion flowpath has been formed due to the concentrated heat release behind the strut injectors.Reasonable heat release distribution along the combustor by changing fuel split is important to achieve high combustion efficiency.
出处 《推进技术》 EI CAS CSCD 北大核心 2014年第4期507-513,共7页 Journal of Propulsion Technology
关键词 火箭基组合循环 亚燃模态 燃烧组织 气化煤油喷注 Rocket-based combined cycle Ramjet mode Combustion organization Vaporized kerosene injection
  • 相关文献

参考文献5

二级参考文献50

  • 1何国强,刘佩进,王国辉,黄生洪.支板簇引射发动机——21世纪新型航天动力[J].宇航学报,2000,21(z1):111-115. 被引量:13
  • 2王厚庆,何国强,刘佩进.以RBCC为动力的巡航飞行器有效载荷质量敏感性分析[J].固体火箭技术,2007,30(2):87-89. 被引量:4
  • 3Heinrich B, Luc-Bouhali A, Ser F, Vigot C. Endothermic liquid fuels: some chemical considerations on the cooling process. AIAA 2001-1785.
  • 4Tim Edwards, lourds Maurice. Hytech fuels/fuel system research. AIAA 98-1562.
  • 5Ken Mihara, Ryo Miyajima, Tadaharu Watanuki, Hirotoshi Kubota. Thermal protection and drag reduction with use of spike in hypersonic flow. AIAA 2001-1828.
  • 6Faulkner R F, Weber J W. Hydrocarbon scramjet propulsion system development, demonstration and application. AIAA 994922.
  • 7Yanoskiy L S, Sapgir G B, Strokin V N, Ivanov V F. Endothermic fuels: some aspects of fuel decomposition and combustion at air flows. 14th International Symposium on Air Breathing Engines, Florence (Italy) Sept. 99, ISABE Paper: 99-7067.
  • 8刘洋.RBCC引射/亚燃及其模态过渡工作过程研究[D].西安:西北工业大学,2008.
  • 9[1]Sholes E H,et al.Selection and Design of a Next Generation Air Breathing Launch Vehicle.AIAA-94-4498
  • 10[2]Siebenhaar A and Bulman M J.The Strutjet Engine:Expolding the Meths Surrounding High Speed Airbreathing Propulsion.AIAA 95-2745

共引文献90

同被引文献40

  • 1吕翔,何国强,刘佩进.RBCC引射模态准一维性能分析模型[J].推进技术,2006,27(6):529-531. 被引量:6
  • 2吕翔,刘佩进,何国强.RBCC发动机性能分析方法研究[J].固体火箭技术,2007,30(2):120-123. 被引量:11
  • 3张育林.变推力液体火箭发动机及其控制技术[M].北京:国防工业出版社.2001.
  • 4Chicatellia, Hartleyt Coleg, et al.Interdisciplinary modeling u- sing computational fluid dynamics and control theory [ C ]// Proceedings of the American Control Conference Baltimore, Maryland, USA : IEEE Press, 1994 : 3438-3443.
  • 5Marten D, Lewis M, Manrice L Q. Experimentation, test, and evaluation requirements for future airbreathing hypersonic systems [ J ]. Journal of Propulsion and Power, 2001, 17 (6): 1361-1365.
  • 6MeDaniel J C, Chelliah H, Goyne C P, et al. US national center for hypersonic combined cycle propulsion: an overview[ C]// Proeeedings of 16th AIAA./DLR/DGLR Internatianal Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2009 -7280, 2009.
  • 7Takegoshi M, Tomioka S, Ueda S, et al. Firing-tests of a rocket eombustor for combined cycle engine at various conditions [ C]//Proceedings of 41st AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, AIAA 2005 - 4286, 2005.
  • 8Sawai S, Sato T, Kobayashi H, et al. Flight test plan for ATREX engine development[ C ]//Proceedings of 12th AIAA International Space Planes and Hypersonic Systems and Technologies, AIAA 2003 - 7027, 2003.
  • 9Sato T, Tanatsugu N, Kobayashi H, et al. Countermeasures against the icing problem on the ATREX precooler [J]. Aeta Astronautiea, 2004, 54(9): 671 -686.
  • 10Chojnach K T, Hawk C W. An assessment of the rocket- based combined cycle propulsion system for earth-to-orbit transportationt [ C ]//Proceedings of 29th Joint Propulsion Conference and Exhibit, AIAA 93 -1831, 1993.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部