期刊文献+

基于小波神经网络的火电单元机组负荷系统建模仿真研究 被引量:10

A SIMULATION STUDY ON LOAD MODELING OF A THERMAL POWER UNIT BASED ON WAVELET NEURAL NETWORKS
下载PDF
导出
摘要 火电单元机组是一种复杂的多变量对象,常规方法难以建立它的非线性数学模型。该文利用一种多输入多输出的连续小波神经网络对单元机组负荷数学模型建模问题进行了研究。网络隐层采用框架小波函数,输出层采用线性函数,采用BP算法对网络进行训练,并利用自适应的学习速率和动量参数加快网络训练的收敛速度。网络的训练结果和测试结果均表明,小波网络输出值与实际模型输出值之间的误差在允许范围内,小波神经网络可以较好地逼近单元机组负荷数学模型。 Thermal power unit is a complex object with multi-variables. It is difficult to build its nonlinear mathematic model in an usual way. This paper presents a simulation study on load modeling of a thermal power unit by a kind of multi-input-multi-output continual WNN model. The linear function and wavelet basis function satisfying the frame condition are employed as an activation function in output and hidden layer respectively, and BP arithmetic is used to train it, and self-adaptive learning rate and momentum coefficient are also used to accelerate the learning speed. The simulation results show that difference between the output value of WNN and the one of real model is in permissible range. WNN can approach the model of a thermal power unit very well.
机构地区 东南大学动力系
出处 《中国电机工程学报》 EI CSCD 北大核心 2003年第10期220-224,共5页 Proceedings of the CSEE
关键词 火电单元机组 负荷系统 建模 仿真 小波 神经网络 非线性数学模型 Wavelet analysis Neural networks Wavelet neural networks Thermal power unit Load model
  • 相关文献

参考文献9

  • 1陈哲,冯天瑾,陈刚.一种基于BP算法学习的小波神经网络[J].青岛海洋大学学报(自然科学版),2001,31(1):122-128. 被引量:45
  • 2张兆宁,毛鹏,郁惟鏞,孙雅明.时间序列小波神经网络在故障测距中的应用[J].中国电机工程学报,2001,21(6):66-71. 被引量:25
  • 3Chen Tianping, Chen Hong. Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural network [J] .IEEE Trans. on NN,1995,6(4): 904-910.
  • 4Zhang Q, Benveniste A. Wavelet networks[J]. IEEE Trans. on NN,1992,3(11): 889-898.
  • 5Pail Y C, Krishnaprasad P S. Analysis and synthesis of feedforward neural network using discrete a ffine wavelet [J]. IEEE Trans. on NN,1993,4(1): 73-75.
  • 6Baskshi B R, Stephanopoulous G Wave-net: A multi resolution,hierarchical neural network with localized learning[J]. AmericanInstitute Chemical Engineer Journal,1993,39(1): 57-81.
  • 7Zhang Jun, Walter G, Miao Y, et al. Wavelet neural networks for function learning [J]. IEEE Trans. on SP,1995,43(6): 1485-1497.
  • 8Szu H, Telfer B, Ksdembe S. Neural network adaptive wavelets for signal representation and classification[J]. Optical Engineering,1992,36(9): 1907-1916.
  • 9Kreinovich V, Sirisaengtaksin O, Cabren S. Wavelet neural networks are asymptotically optimal approximators for functions of one variable[A].Florida, USA: Proceeding of IEEE ICNN'[C]. 1994.1: 299-304.

二级参考文献10

共引文献67

同被引文献86

引证文献10

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部