期刊文献+

基于灰色GM(1,1)和BP神经网络组合预测模型及应用 被引量:5

Combination Forecast Model and Application Based on GM(1, 1) and BP Neural Network
下载PDF
导出
摘要 在分析灰色GM(1,1)模型和BP神经网络模型优缺点的基础上,构建了基于GM(1,1)与BP神经网络组合预测模型。首先利用GM(1,1)模型对系统发展进行预测得到一组预测值,同时分别将原始数据与预测数据作为输入输出数据对BP神经网络进行训练,以便得到权值和阀值,最后利用得到的权重和阈值并输入预测年份,即可得预测值。将构建的组合模型对中国人口未来发展趋势进行预测,预测结果表明,人口总量在中短期内继续增长,增速较为平稳,每年以0.11亿人口数增长。该算例表明了该组合预测模型具有较高的预测精度。 The combination forecast model of GM (1, 1) and BP neural network has been constructed based on the analysis of GM (1, 1) model and BP neural network model for the advantages and disadvantages in this paper. Firstly, a set of predicted values is ob-tained by GM(1, 1).Secondly,a index weight was obtained by the original data and forecasting data as input and output ones to train the BP neural network.Finally,prediction can be obtained by using the weights and thresholds. Combination forecast model has been applied to forecast development trend of the population of China in the future,the prediction results show that the population continued to grow in the medium term and relatively stable growth, with 0.11 million population growth each year. The example shows that the combination forecast model has higher prediction accuracy.
机构地区 铜陵学院
出处 《铜陵学院学报》 2016年第3期102-104,共3页 Journal of Tongling University
基金 安徽省高校省级人文社会科学重点研究项目(SK2015537) 安徽省大学生创业训练项目(AH201410383115)
关键词 灰色理论 BP神经网络模型 GM(1 1)模型 人口预测 grey theory BP neural network model GM(1 1) population forecast
  • 相关文献

参考文献3

二级参考文献18

  • 1方震.涂膜保护寿命的预测理论初探[J].涂料涂装与电镀,2005,3(1):3-5. 被引量:13
  • 2王俊芳,杨晓然.军用防腐涂料涂装的发展探讨[J].装备环境工程,2005,2(6):45-47. 被引量:9
  • 3李永祥,童恒超,曹洪涛,张宏韬,杨建国.数控机床热误差的时序分析法建模及其应用[J].四川大学学报(工程科学版),2006,38(2):74-78. 被引量:38
  • 4耿刚强,林杰,刘来君,崔静娜.钢桥防腐蚀涂层寿命的预测方法[J].长安大学学报(自然科学版),2006,26(5):43-47. 被引量:19
  • 5李永祥,杨建国,郭前建,王秀山,沈金华.数控机床热误差的混合预测模型及应用[J].上海交通大学学报,2006,40(12):2030-2033. 被引量:28
  • 6RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-a review: Part II: Thermal errors[J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1257-1284.
  • 7YANG S, YUAN J, NI J. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network[J]. International Journal of Machine Tools and Manufacture, 1996, 36(4): 527-537.
  • 8MIZE C D, ZIEGERT J C. Neural network thermal error compensation of a machining center[J]. Precision Engineering, 2000, 24(4): 338-346.
  • 9YANG Hong, NI Jun. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error[J]. International Journal of Machine Tools and Manufacture, 2005, 45(4-5): 455-465.
  • 10SHEN Jinhua, YANG Jianguo. Application of partial least squares neural network in thermal error modeling for CNC machine tool[J]. Key Engineering Materials, 2009, 392: 30-34.

共引文献91

同被引文献42

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部