期刊文献+

随机模糊神经网络及在随机混沌时间序列预测中的应用 被引量:3

Stochastic Fuzzy Neural Network and Its Application to Prediction of Stochastic Chaotic Time Series
下载PDF
导出
摘要 针对随机模糊神经网络(SFNN)的网络结构没有明确的物理含义,仅仅是一种实现随机模糊逻辑系统的计算结构的问题,对其网络结构进行了改进,重新定义了每层的节点原型.改进后每层之间的物理含义明确且节点数目减少,从而计算量有所减少.对于SFNN的参数和结构,可以分别通过参数学习算法和结构学习算法来优化.将SFNN用于随机混沌时间序列预测,仿真结果表明:该系统由于引入了随机的概念,使网络能更有效地防止噪声的干扰,因而更适合于工程应用. Focusing on the problem that the structure of the SFNN (stochastic fuzzy neural network) has no physical meaning and is just a computation network to realize the computation of stochastic fuzzy logic system, the structure of the SFNN is modified and the nodes in each layer of the SFNN are discussed for solving the problem. Each layer of the improved structure has exact physical meaning, and the number of the nodes and computation burden are decreased. The parameter and structure can be optimized by using learning algorithms and applied to predict the stochastic chaotic time series. The simulation results show that the SFNN is superior to the existing neural networks in modeling and controlling of stochastic system and more suitable for engineering applications.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第10期991-994,共4页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划"八六三"重大专项资助项目 (2 0 0 3AA50 1 1 0 0 )
关键词 随机模糊神经网络 参数学习 结构学习 随机混沌时间序列 Chaos theory Fuzzy sets Learning algorithms Time series analysis
  • 相关文献

参考文献3

  • 1Wang L X. Adaptive fuzzy systems and control: design and stability analysis [M]. Englewood Cliffs,NJ: PTR Prentice-Hall, 1994.
  • 2Jing Z L, Luo A C J, Tomizuka M. A stochastic,fuzzy, neural network for nolinear dynamic systems[J]. Int Journal of Intelligent Control and Systems,1998,3(2):193-203.
  • 3Wang J P,Jing Z L. A stochastic fuzzy neural network with universal approximation and its application [A].Liu Yingming. Proc of Int Conf on Fuzzy Information Processing Theories and Applications [C]. Beijing:Tsinghua University Press & Springer, 2003. 497-502.

同被引文献17

  • 1裴晓梅,郑崇勋,宾光宇.基于多通道脑电特征运动意识任务的分类[J].西安交通大学学报,2005,39(8):904-907. 被引量:10
  • 2OZTURK M C, XU D, PRINCIPE J C. Analysis and design of echo state networks [J]. Neural Computation, 2007, 19(1):111-138.
  • 3EDELMAN G M, TONONI G. A universe of consciousness: how matter becomes imagination [M]. New York, USA.. Basic Books, 2000.
  • 4KAISER M, HILGETAG C C. Development of multicluster cortical networks by time windows for spatial growth [J]. Neurocomputing, 2007, 70(10/12) : 1829 -1832.
  • 5NISBACH F, KAISER M. Developmental time windows for spatial growth generate multiple-cluster small-world networks[J]. The European Physical Journal:B, 2007, 58(2): 185-191.
  • 6JAEGER H, HAASS H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication [J]. Science, 2004, 304(5667):78 -80.
  • 7王心元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003..
  • 8Jing Z L,Luo A C J.A stochastic,fuzzy,neural network for nolinear dynamic systems[J].Int Journal of Intelligent Control and Systems,1998,3(2):193-203.
  • 9Wang J P,Jing Z L.A stochastic,fuzzy,neural network with universal approximation and its application[A].Liu Yiangming.Proc of Int Corf on Fuzzy Information Processing Theories and Applications[C].Beijing:Tsinghua University Press &Springer,2003,497-502.
  • 10Liu Xiangguan,Li Qihui,Intelligent Automation Models for BF Ironmaking Process[C].Proceedings of the World Congress on IntelligentControl and Automation (WCICA),v 4,2004:3547-3551.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部