期刊文献+

基于改进背景差分法的运动物体检测的研究 被引量:6

Research of Moving Object Detection Based on Improved Background Subtraction Method
下载PDF
导出
摘要 文中针对传统背景差分法在检测运动物体时的难点,主要是背景重构、背景实时更新、差分阈值选取,提出了一种改进的快速背景重构算法及阈值选取算法。基于传统的连续多帧图像先累加再求平均值的背景重构方法,改进的背景重构算法考虑到背景灰度区域变化不大的特点,在图像像素累加前,进行相邻两帧图像像素值相减,再与阈值作比较,小于阈值才会将前一帧像素值进行累加。针对传统的最大类间方差法是对整张图做灰度级分割,对该算法进行了改进,将图像分割成多块,使用最大类间方差法求出每个图像块的阈值,最后对阈值求取均值,并将该均值作为差分图像二值化的阈值。仿真结果显示,采用了改进算法后,运动物体的检测效果有了较好的提升。 Aiming at the traditional background difference method which has some difficulties in detecting moving objects.Main difficulties are the background reconstruction,real-time background update,difference threshold selection.This paper puts forward an improved fast background reconstruction algorithm and threshold selection algorithm.Based on the traditional method of background reconstruction for the average value of successive multi frame images,the improved background reconstruction algorithm takes into account the change of the background gray area,in front of the image pixels accumulation,the new method will be carried out in two adjacent frame image pixel values subtraction,then compare to threshold,if the result is less than the threshold,the previous frame pixel values are cumulative.Aiming at the traditional method,the maximum variance between classes is to do the gray level segmentation of the entire graph.The algorithm is improved,the image is segmented into several blocks,and the threshold value of each image block is obtained by the method of maximum between class variance.Finally,the threshold value is obtained,and the mean value is used as the threshold value of binarization.The simulation results show that the improved algorithm can obtain better testing result.
出处 《通信电源技术》 2016年第2期37-38,40,共3页 Telecom Power Technology
关键词 背景重构 图像分割 阈值选取 background reconstruction image segmentation threshold selection
  • 相关文献

参考文献4

二级参考文献75

  • 1祝宇鸿.一种改进的数字图像中值滤波算法[J].吉林大学学报(信息科学版),2001,19(2):23-27. 被引量:19
  • 2陈震 ,高满屯 ,曲仕茹 ,杨声云 .基于直线光流场的三维运动和结构重建[J].计算机学报,2004,27(8):1046-1055. 被引量:5
  • 3Ataman E, Aatre V K, Wong K M. Some statistical properties of median filters [J]. IEEE Transactions on Acoustics Speech,Signal Processing, 1980, 28(4): 415~421
  • 4Gallagher N C, Wise G L. A theoretical analysis of properties of the median filters [J]. IEEE Transactions on Acoustics Speech,Signal Processing,1981, 29(1): 1136~1141
  • 5Wang Junghua, Lin Lianda, et al. Improved median filter using min/max algorithm for image processing [J]. Electronics Letters, 1997, 33(16): 1362~1363
  • 6Yanowitz S, Bruckstein A. A New Method for Image Segmentation[J].Computer Vision Graphics and Image Processing,1989,46(4):82-95.
  • 7Y Park. Shape-resolving Local Thresholding for Object Detection[J]. Pattern Recognition Letters, 2001, 22(5):883-890.
  • 8J M Blosseville, C Krafft, F Lenoir,et al.TITAN:New Traffic Measurements by Image Processing[C].Proc. of IFAC Transportation Systems, 1999,14(1):277-296.
  • 9N Hoose, L G Willumsen. Automatically Extracting Traffic Data from Video-tape Using the CLIP4 Parallel Image Processor[J].Pattern Recognition Letters, 1987,6(3):199-213.
  • 10T Abramczuk. A Microcomputer based TV Detector for Road Traffic[J].In Symposium on Road Research Program,T,1984,3(2):145-147.

共引文献257

同被引文献47

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部