摘要
医学数据挖掘是提高医院信息管理水平 ,为疾病的诊断和治疗提供科学的、准确的决策 ,促进远程医疗和社区医疗发展的需要。本文对医学数据挖掘的关键技术——数据的预处理、多属性信息的融合、挖掘算法的高效性与鲁棒性、提供知识的准确性与可靠性等进行了论述 ;阐述了基于计算智能的医学数据挖掘方法 ,介绍了人工神经网络、模糊逻辑、遗传算法、粗糙集理论和支持向量机在医学数据挖掘中的应用 ;最后对医学数据挖掘的特点和亟待解决的问题进行了总结。
Modern medicine generates a great deal of information stored in the medical database. Extracting useful knowledge and providing scientific decision-making for the diagnosis and treatment of disease from the database increasingly becomes necessary. Data mining in medicine can deal with this problem. It can also improve the management level of hospital information and promote the development of telemedicine and community medicine. Because the medical information is characteristic of redundancy, multi-attribution, incompletion and closely related with time, medical data mining differs from other one. In this paper we have discussed the key techniques of medical data mining involving pretreatment of medical data, fusion of different pattern and resource, fast and robust mining algorithms and reliability of mining results. The methods and applications of medical data mining based on computation intelligence such as artificial neural network, fuzzy system, evolutionary algorithms, rough set, and support vector machine have been introduced.The features and problems in data mining are summarized in the last section.
出处
《生物医学工程学杂志》
EI
CAS
CSCD
2003年第3期559-562,共4页
Journal of Biomedical Engineering
基金
国家 8 63资助项目 (863 -3 0 6-ZD13 -0 5 -0 2 )
国家教育部博士点基金资助项目 (980 61117)
关键词
医学数据
数据挖掘
医学信息
医院
信息管理
Data mining Medical information Computation intelligence Medical decision-making