期刊文献+

快慢型Lorenz系统和Chua系统的慢流形分析 被引量:1

Slow Manifolds for Lorenz System and Chua System
下载PDF
导出
摘要 Lorenz系统和Chua系统的奇异性质已有广泛的研究.本文将Lorenz系统和Chua系统看作快慢型自治系统,从几何奇异摄动的角度,讨论两系统的慢流形,对其轨线的奇异性作初步定性分析,并与有关文献的结果进行了比较. The singular attributes of Lorenz system and Chua system have been well known. In this paper we consider the two systems as slow_fast autonomous dynamical systems to obtain the analytic equations of the slow manifold from the geometric singular perturbation point of view. This method allows us to give a geometric characterization of the attractor and a global qualitative description of its dynamics. Finally, a brief comparison between our results and relative articls' is presented.
出处 《四川师范学院学报(自然科学版)》 2003年第3期338-342,共5页 Journal of Sichuan Teachers College(Natural Science)
关键词 LORENZ系统 Chua系统 快慢型自治系统 几何奇异摄动理论 奇异性 慢流形 混沌行为 slow manifold slow-fast system geometric singular perturbation Lorenz system Chua system
  • 相关文献

参考文献7

  • 1复旦大学数学系.奇异摄动引论[M].上海:复旦大学出版社,1982..
  • 2FENICHEL N. Geometric Singular Perturbation Theory for Ordinary Differential Equations[J] .J Diff Eq, 1979,31:53 -98.
  • 3JONES C K R T.Geometric Singtdar Perturbation Theory[J] .Lecture Notes in Math, 1994,609:45 - 118.
  • 4RINALDI S, SCHEFFER M. Geometric Analysis of Ecological Models with Slow and Fast Provceass[J] .Ecosystems, 2000,3:507- 521.
  • 5RANDANI S, ROSSEITO B, CHUA L O,et al. Slow Manifolds of Some Chaotic Systems with Applications to Laser Systems[J] .International Journal of Bifurcation and Chaos, 2000,10( 12 ) : 2729 - 2744.
  • 6ROSSETID B,LENZINI T, RANDANI S,et a]. Slow-Fast Autonomous Dynamical Systems[J] .International Journal d Bifurcation and Chaos, 1998,8(11) :2135 - 2145.
  • 7ASHWIN P, BARTUCCEH,I M V, BRIDGES T J, et a]. Travelling Fronts for the KPP Equation with Spatio-Temporal Delay[J].Z Angew Math Phys, 2002,53:103 - 122.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部