期刊文献+

高层建筑火灾风险的神经网络评价 被引量:15

High rising building fire risk assessment based on the artificial neural network
下载PDF
导出
摘要 通过对模糊综合评价和人工神经网络评价进行分析比较,表明神经网络采用非线性转换函数的处理方法更符合火灾风险评价的非线性特性。针对神经网络易陷入局部极小而引起评价指标权值分布不合理的缺陷,提出运用遗传算法克服神经网络的这种缺陷,在此基础上建立了基于遗传算法和神经网络的建筑火灾风险评价模型。研究实例证明了此模型的可行性。图1,表3,参11。 High building fire is one of the most important aspect in city safety. Fire prection based on pre-formance is becoming a primary way in building fire prection design. The difference between new design method and the traditional is performing fire risk assessment to decide the fire prelection equipment, so that design can meet the needs of building safety by the lowest economic cost. Fuzzy Comprehensive Assessment is a method widely used in safety assessmnet, but it can not non-linear issues very well. Artificial Neural Network is compared with Fuzzy Comprehensive Assessment approach in this paper. The result of comparison shows the former is more suitable. A new risk assessment model for building fire based on the Artificial Neural Network and Genetic Algorithm is established after analyzing the limitation of the Artificial Neural Network such as its searching and optimizing method of weight. An example is given and the results shows this model is reliable. 1fig. ,3tabs. ,11refs.
出处 《湘潭矿业学院学报》 2003年第3期69-72,共4页 Journal of Xiangtan Mining Institute
基金 国家自然科学基金(编号:5013404) 北京市自然科学基金(编号:8992010)
关键词 高层建筑 火灾风险 神经网络 遗传算法 评价模型 building fire risk assessment artificial neural network genetic algorithm
  • 相关文献

参考文献5

二级参考文献19

共引文献57

同被引文献144

引证文献15

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部