期刊文献+

基于结构元模糊值函数的Newton-Leibniz公式 被引量:1

Newton-leibniz formulas of fuzy-valued function based on structuring element
下载PDF
导出
摘要 模糊值函数与经典函数之间存在着一种必然的联系,因此研究模糊值函数的Newton-Leibniz公式也就具有了很重要的价值,原有的模糊值函数的Newton-Leibniz公式是在标准算子下给出的,其表现形式及实际应用不够灵活。为了体现该公式的灵活性,本文在受限算子下,利用模糊结构元理论给出了模糊值函数的Newton-Leibniz公式的一种新的表现形式,这种形式摒弃了对原函数的限制,使得该公式运用起来更加灵活简便,而且具有一定的实际应用价值,同时也体现了模糊结构元理论在简化模糊分析计算方面的优越性,整个公式的给出和证明过程及文章中的实例也说明了这一点。 Fuzzy-valued function has a certain relation to classical function, so it will be very important to study the Newton-Leibniz formula of fuzzy-valued function, the previous formula was given on the condition that the arithmetic operator was standard fuzzy arithmetic, its expression wasn't simple. In order to make the expression of the formulas become simple, this paper gives a new kind of expression of the Newton-Leibniz formula by using the method of fuzzy structuring element on the condition that the arithmetic operator is constrain fuzzy arithmetic, this new kind of expression avoids the limit of image function, so the expression of the formula becomes simpler, and it also has a certain value both in theory research and practical application, at the same time the advantage of fuzzy structuring element theory in fuzzy analysis and calculation is represented ,the expression of formula and the proof of formula and the example all illustrate it.
作者 王磊 郭嗣琮
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2003年第5期688-690,共3页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金(50244015)
关键词 模糊值函数 模糊结构元 模糊微分 模糊积分 NEWTON-LEIBNIZ公式 模糊数学 微积分理论 fuzzy-valued function fuzzy structuring element fuzzy differential fuzzy integral
  • 相关文献

参考文献13

  • 1周智,于朝霞.模糊微分方程的最小与最大解[J].模糊系统与数学,1995,9(4):54-59. 被引量:3
  • 2王德谋 罗承忠.模糊微分运算的推广.模糊数学,1985,5(1):75-80.
  • 3郭嗣琮.模糊分析中的结构元方法(Ⅰ)[J].辽宁工程技术大学学报(自然科学版),2002,21(5):670-673. 被引量:111
  • 4罗承忠 王德谋.区间值函数积分的推广与Fuzzy值函数的积分[J].模糊数学,1983,(3):45-52.
  • 5D Dubois,H.Prade,Towards fuzzy differential calculus Part1 :Integration of fuzzy mapping, Part2:Integration on fuzzy intervals,Part3: Differenfiation[J].Fuzzy Sets and System ,1982,8(1):1-7,8(2):105-116;8(3):225-233.
  • 6O Kaleva. The Cauchy problem for frzzy differential equations[J]. Fuzzy Sets and System 1990,35(3): 389-396.
  • 7Y Zhang,Z Qiao and G Wang Solving processes for a system of firstorder fuzzy differential equations[J]. Fuzzy Sets and System, 1998,95(3): 333-347.
  • 8J -Y Park,H K Han and K -H Son. Fuzzy differential equation with nonlocal condition[J]. Fuzzy Sets and System,2000,115(3): 365-369.
  • 9S Song,L Guo ano C Feng. Global existence of solutions to fuzzy differential equations[J].Fuzzy Sets and System ,2000,115(3): 371-376.
  • 10George J Klir . Fuzzy arithmetic with requisite constraints[J]. Fuzzy Sets and System, 1997,91(2):165-175.

二级参考文献1

  • 1吴从昕 马明.模糊分析基础[M].北京:国防工业出版社,1991..

共引文献121

同被引文献9

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部