摘要
为了解决量子遗传算法(QGA)用于连续多峰函数优化易陷入局部极值的问题,提出了一种改进的量子遗传算法(IQGA).这种改进的量子遗传算法采用了已搜索到的最佳个体更新量子门和群体灾变策略.典型函数的测试结果表明,IQGA比QGA的收敛速度更快,且能有效地克服QGA易"早熟收敛"的不足.应用结果表明,IQGA的性能优于QGA和其它遗传算法.
An improved quantum genetic algorithm(IQGA) was proposed to overcome the shortcoming of the quantum genetic algorithm(QGA),i.e. local optimization, when it is used for the optimization of continuous functions with many extreme values. In IQGA, the strategies of updating quantum gate using the best solution obtained and population catastrophe were adopted. The test results for two typical functions show that the convergence speed of IQGA is faster than that of QGA, and IQGA can converge in a global solution space, overcoming the shortcoming of QGA. The application results indicate that IQGA is better than QGA and other genetic algorithms.
出处
《西南交通大学学报》
EI
CSCD
北大核心
2003年第6期717-722,共6页
Journal of Southwest Jiaotong University