摘要
Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transfer-ase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twenty-fold above the other's and taking maximum product absorbance Am as parameter while Km as constant, Vm/Km was obtained by nonlinear fitting of GST reaction curve to the integrated Michaelis-Menten equation In [Am/(Am -Ai)] + Ai/ ( ξ× Km ) = ( Vm/Km )×ti (1). Results: Vm/Km for GST showed slight dependence on initial substrate concentration and data range, but it was resistant to background absorbance, error in reaction origin and small deviation in presetting Km. Vm/Km was proportional to the amount of GST with upper limit higher than that by initial rate. There was close correlation between Vm/Km and initial rate of the same GST. Consistent results were obtained by this integrated method and classical initial rate method for the measurement of mouse liver GST. Conclusion: With the concentration of one substrate twenty-fold above the other's, this integrated method was reliable to measure the activity of enzyme on two substrates , and substrate concentration of the lower one close to its apparent Km was able to be used.
Objective: The integrated method was investigated to measure Vm/Km of mouse liver glutathione S-transferase (GST) activity on GSH and 7-Cl-4-nitrobenzofurazozan. Methods: Presetting concentration of one substrate twenty-fold above the others and taking maximum product absorbance Am as parameter while Km as constant, Vm/Km was obtained by nonlinear fitting of GST reaction curve to the integrated Michaelis-Menten equation ln [Am/(Am-Ai)]+Ai/(ε×Km)=(Vm/Km)×ti (1). Results: Vm/Km for GST showed slight dependence on initial substrate concentration and data range, but it was resistant to background absorbance, error in reaction origin and small deviation in presetting Km. Vm/Km was proportional to the amount of GST with upper limit higher than that by initial rate. There was close correlation between Vm/Km and initial rate of the same GST. Consistent results were obtained by this integrated method and classical initial rate method for the measurement of mouse liver GST. Conclusion: With the concentration of one substrate twenty-fold above the others, this integrated method was reliable to measure the activity of enzyme on two substrates, and substrate concentration of the lower one close to its apparent Km was able to be used.
基金
National Natural Science Foundation of China (No.30200266)