期刊文献+

G-凸空间内G_F-优化对应的极大元和抽象经济平衡(英文) 被引量:8

Maximal Elements of G_F-Majorized Correspondences and Equilibria of Abstract Economies on G-Convex Spaces
下载PDF
导出
摘要 设I是有限或无限指标集 .引入了涉及集值映象F∈Ukc(Y ,X)的一类映拓扑空间X到广义凸空间 (Yi,Γi)的GF 优化映象 ,其中Y=∏i∈IYi是广义凸空间 (Yi,Γi)的乘积空间 .在广义凸空间的非紧设置下 ,证明了GF 优化映象族的极大元存在定理 .作为应用 ,对具有GF 优化对应的定性对策和抽象经济 ,在广义凸空间的非紧设置下建立了某些新的平衡存在性定理 .这些定理改进 。 economies with G F majorized correspondences are established under noncompact setting of G convex spaces. These theorems improve, unify and generalize many important known results in recent literature.
作者 丁协平
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2003年第6期555-565,共11页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点科研基金资助项目~~
关键词 GF-优化对应 极大元 抽象经济 定性对策 平衡 广义凸空间 G_F-majorized correspondence Maximal elements Abstract economy Qualitative game Equilibrium Generalized convex space
  • 相关文献

参考文献34

  • 1丁协平.局部凸拓扑矢量空间内的广义对策和广义拟变分不等式(英文)[J].四川师范大学学报(自然科学版),2000,23(2):109-116. 被引量:11
  • 2丁协平.局部G - 凸一致空间内的聚合不动点和具有U - 优化对应的广义对策平衡(英文)[J].四川师范大学学报(自然科学版),2002,25(6):551-556. 被引量:5
  • 3Tan K K, Zhaag X L. Fixed point theorems on G- convex spaces and Applications[J]. Proe Nonlinear Funct Anal Appl,1996,1(1):1 - 19.
  • 4Tarafdar E. A fixed point theorem and equilibrium point of an abstract economy[J]. J Math Econom, 1991,20(1) :211 - 218.
  • 5Tarafdar E. Fixed point theorems in H-spaces and equilibrium points of abstract economies[J]. J Austral Math Soc (Ser A), 1992,53(1) :252 - 260.
  • 6Toussaint S. On the existence of equilibra in economies with infinite commodities and without ordered preferences[J]. J Econom Theory,1984,33(1) :98 - 115.
  • 7Tulcea C I. On the equilibriums of generalized games[R]. The Center for Mathematical Studies in Economics and Management Science,1986.696.
  • 8Tulcea C I. On the approximation of upper semi-continuous correspondences and and the equilibriums of generalized games[J]. J Math Anal Appl, 1988,136(1) :267 - 189.
  • 9Yarnnelis N C, Ptabhakar N D. Existence of maximal elements elements and equilibria in linear topological spaces[J]. J Math Econom,1983,12(2) :233 - 245.
  • 10Yuan G X Z. The existence of equilibria for noncompact genemlized games[ J]. Appl Math Lett,2000, 13 (1):57 - 63.

二级参考文献37

  • 1刘家特.中国传统武术对大学生心理健康的影响[J].佳木斯教育学院学报,2011(2):272-273. 被引量:6
  • 2殷建鑫.武德思想在当代教育中的价值[J].佳木斯教育学院学报,2010(3):134-135. 被引量:4
  • 3Ding X P, Tan K K. A minimaxinequality with application to existence of equilibrium point and fixed point theorems[J].Colloq Math,1992,63:233~247.
  • 4Ding X P, Tan K K. Fixed point theorems and equilibria of noncompact generalizedgames[A]. Tan K K. Fixed Point Theory and Applications[C]. Singapore:WorldScientific,1992.80~96.
  • 5Ding X P, Tan K K. On equilibria of noncompact generalized games[J]. J Math AnalAppl,1993,177:226~238.
  • 6Ding X P, Kim W K, Tan K K. Equilibria of non-compact generalizd games withL*-majorized preference correspondences[J]. J Math Anal Appl,1992,162:508~517.
  • 7Ding X P, Kim W K, Tan K K. A selection theorem and its application[J]. BullAustral Math Soc,1992,46:205~212.
  • 8Ding X P, Kim W K, Tan K K. Equilibria of generalized games with L-majorizedcorrespondences[J]. Internat J Math Math Sci,1994,17(4):783~790.
  • 9Ding X P, Tarafdar E. Fixed point theorem and existence of equilibrium points ofnoncompact abstract economies[J]. Nonlin World,1994,1:319~340.
  • 10Ding X P, Yuan G X Z. The study of existence of equilibria for generalized gameswithout lower semicontinuity in locally convex topological vector spaces[J]. J Math AnalAppl,1998,227:420~438.

共引文献14

同被引文献75

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部