期刊文献+

Beurling-Ahlfors扩张的伸张函数增长阶的估值 被引量:1

Estimates of the Growth of the Dilatation Function of Beurling-Ahlfors Extension
下载PDF
导出
摘要 研究拟对称函数ρ在递减函数ρ(t)控制下时Beurling-Ahlfors扩张的伸张函数D的增长阶,改进了已有的结果,得到:D≤2(ρ+2). This paper estimated the growth of the dilatation function of BeurlingAhlfors extension when quasisymmetric function is controlled by a decreasing function. It improved the existing result and got D≤2(ρ+2).
作者 郑学良
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2003年第11期1811-1813,共3页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(19531060) 浙江省教育厅科研项目(20030768) 台州学院重点项目(200302)
关键词 Beurling—Ahlfors扩张 拟对称函数 伸张函数 Beurling-Ahlfors extension quasisymmetric function dilatation function
  • 相关文献

参考文献4

  • 1Beurling A, Ahlfors L V. The boundary correspondence under quasiconformal mappings [ J]. Acta Math, 1956,96 : 125- 142.
  • 2Lebtinen M. The dilatation of Beurling-Ahlfors extension of quasisymmetric functions [J]. Ann Acad Sci Fenn Ser AI Math,1983,8(1):187-191.
  • 3Chen Jixiu, Chen Zhiguo, He Chengqi. Boundary correspondence under μ(z) homeomorphisms[J]. Michigan Math J,1996,43:211-220.
  • 4郑学良.一类伸张函数增长阶的估计[J].上海交通大学学报,2003,37(2):303-305. 被引量:1

二级参考文献5

  • 1方爱农.广义Beurling-Ahlfors定理[J].中国科学(A辑),1995,25(6):565-572. 被引量:7
  • 2Beurling A, Ahlfors L V. The boundary correspondence under quasiconformal mappings[J].Acta Math,1956,96:125-142.
  • 3Ahlfors L V. Lectures on quasiconformal mappings[M].New York: Van Nostrand,1966.
  • 4Lehtinen M. The dilatation of Beurling-Ahlfors extension of quasisymmetric functions[J].Ann Acad Sci Fenn Ser AI Math,1983,8(1):187-191.
  • 5Chen Jixiu, Chen Zhiguo, He Chengqi. Boundary correspondence under μ(z) homeomorphisms[J].Michigan Math J, 1996,43:211-220.

同被引文献8

  • 1Ahlfors L V. Lectures on quasiconformal mappings [M], New York: Nostrand Company, 1966.
  • 2Beurling A, Ahlfors L V. The boundary correspondence under quasiconformal mappings [J]. Acta Math,1956,96:125-142.
  • 3Lehtinen M. The dilatation of Beurling-Ahlfors extension of quasisymmetric functions[J]. Ann Acad Sci Fenn Ser AI Math,1983,8(1):187-191.
  • 4Li Zhong. The lower bound of the maximal dilatation of the Beurling-Ahlfors extension [J]. Ann Acad Sci Fenn Ser AI Math,1990,15:75-81.
  • 5Fang A N. Generalized Beurling-Ahlfors theorem[J].Science in China Ser A,1995,25(6):565-572.
  • 6Chen Z G. Estimates on u(z)-Homeomporphism of the unit disk[J]. Israel Journal of Math, 2001,22: 347-358.
  • 7Zheng S Z. Partial regularity for A-harmonic systems and quasiregular mappings [J]. Chinese Journal of Contemporary Mathematics, 1998,19 ( 1 ): 19- 30.
  • 8郑学良.Beurling-Ahlfors扩张的伸张函数与ID-同胚[J].数学学报(中文版),2002,45(5):1035-1040. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部