期刊文献+

JPEG2000中9/7离散小波变换二进制系数实现 被引量:14

9/7 Discrete Wavelet Transform with Binary Coefficients in JPEG2000
下载PDF
导出
摘要 基于实数的二进制表示法,把CDF(Cohen,DaubechiesandFeauveau)9/7双正交小波基的提升系数化为二进制,采用简单的移位-加操作代替结构复杂的浮点乘法器,从而实现了JPEG2000中9/7离散小波变换的定点计算.相对于浮点计算法,移位-加操作最大的优点是计算简单,特别易于超大规模集成电路实现,因而使硬件实时处理图像信号成为可能.实验仿真结果表明:在低压缩比的情况下,用移位-加操作重构的图像,其峰值信噪比(PSNR)只比浮点法低0.10dB,当压缩比增大时,其PSNR值略好于浮点法. Based on the binary representation for real number, the lifting coefficients of the 9/7 biorthogonal wavelet filter pair of CDF (Cohen, Daubechies and Feauveau) are expressed in binary representation. A simple shift-add operation is used to substitute for the multiplier with complicated architecture operating on floating-point, so that the 9/7 discrete wavelet transform in JPEG2000 is implemented through fixed-point computing. Compared with the floating-point computing method, the shift-add operation is simpler, and can be implemented easily by VLSI, which enables the real-time image processing to be realized by hardware. The simulation results show that, in the case of low compression ratio, the PSNR (peak signal-to-noise ratio) of the reconstructed image by the shift-add operation is only 0.1 dB lower than the floating-point computing method. When the compression ratio is high, our method is a little superior to the latter.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2003年第12期1211-1215,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金优秀创新研究群体资助项目(60024301) 国家"八六三"基金资助项目(2002AA1Z1440 2002AA135150).
关键词 离散小波变换 定点计算 浮点计算法 提升 移位-加操作 Application specific integrated circuits Binary sequences Image coding Image compression Real time systems
  • 相关文献

参考文献12

  • 1[1]Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets [J]. Commun Pure Appl Math, 1992, 45: 485~560.
  • 2[2]Villasenor J D, Belzer B, Liao J. Wavelet filter evaluation for image compression [J]. IEEE Trans on Image Processing, 1995, 4(8): 1 053~1 060.
  • 3[3]Lightstone M, Majani E, Mitra S K. Low bit-rate design considerations for wavelet-based image coding[J]. Multidimensional Syst Signal Processing, 1997,8(1): 111~128.
  • 4[4]Masud S, Mc Canny J V. Finding a suitable wavelet for image compression applications [J]. IEEE Proceedings 1998, 5:2 581~2 584.
  • 5[5]Wei D, Tian J, Wells R O, et al. A new class of biorthogonal wavelet systems for image transform coding [J]. IEEE Trans on Image Processing, 1998, 7(7): 1 000~1 013.
  • 6[6]ISO/IFC Final Committee Draft 15444-1-2000 , JPEG 2000 image coding system [S].
  • 7[7]Tay D B H. Rationalizing the coefficients of popular biorthogonal wavelet filters [J]. IEEE Trans on Circuits & Syst for Video Tech, 2000, 10(6): 998~1005.
  • 8[8]Sweldens W. The lifting scheme: a construction of second generation wavelets [J]. SIAM J Math Anal 1997, 29(2): 511~546.
  • 9[9]Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps [J]. Fourier Analysis and Applications, 1998, 4(3): 247~269.
  • 10[10]Woods J W, Naveen T. A filter based bit allocation scheme for subband compression of HDTV [J]. IEEE Trans on Image Processing, 1992, 1(3): 436~440.

同被引文献78

引证文献14

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部