期刊文献+

基于Web挖掘的关联推荐算法研究 被引量:2

Research on Recommendation Algorithm of correlation based on Web mining
下载PDF
导出
摘要 对用户需求的分析中使用Web挖掘,其中Web个性化的实现使用的是关联规则,这一规则能够为用户提供个性化服务,并且成为Web技术的研究热点。本文以网络教学系统为案例,来对Web挖掘的关联推荐算法进行探讨。内容主要涉及到Web数据挖掘技术、关联推荐算法的思路、算法分析。 The analysis of the user demand in the use of Web mining,the personalized Web is implemented using the association rules,this rule can provide personalized service for users,and has become the hotspot of Web technology.Based on the network teaching system as the case,carries on the discussion related to Web mining and recommendation algorithm.The content mainly involves the Web data mining,association recommendation algorithm,algorithm analysis.
出处 《电子测试》 2013年第3X期138-139,共2页 Electronic Test
关键词 WEB挖掘 关联规则 个性化服务 推荐算法 Web mining association rules personalized service recommendation algorithm
  • 相关文献

参考文献5

二级参考文献59

  • 1Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD conference on management of data, 1993, 207-216.
  • 2Han J, Pei J, Yin Y. Mining frequent pattems without candidate generation [C]. Proc 2000 ACM-SIGMOD Int Conf Management of Data(SIGMOD' 00), Dalas, TX, 2000.
  • 3Savasere A, Omiecinski E, Navathe S. An efficient algorithm for mining association rules in large databases[C]. Proceedings of the 21st International Conference on Very large Database,1995.
  • 4Mannila H, Toivonen H, Verkamo A. Efficient algorithm for discovering association rules[C]. AAAI Workshop on Knowledge Discovery in Databases, 1994.181-192.
  • 5Toivonen H. Sampling large databases for association rules[C].Bombay, India: Proceedings of the 22nd International Conference on Very Large Database, 1996.
  • 6Brin S, Motwani R, Silverstein C. Beyond market baskets: Generlizing association rules to correlations[C]. Proceedings of the ACM SIGMOD, 1996. 255-276.
  • 7Park J S, Chen M S, Yu P S. An effective hash-based algorithm for mining association rules[C]. San Jose, CA:Proceedings of ACM SIGMOD International Conference on Management of Data, 1995. 175-186.
  • 8Ng R, Lakshmanan L V S, Han J. Exploratory mining and pruning optimizations of constrained associations rules[C]. Seattle,Washington: Proceedings ofACM SIGMOD International Conference on Management of Data, 1998.13-24.
  • 9PandyaAS MacyRB.神经网络模式识别及其实现[M].北京:电子工业出版社,1999.7-110.
  • 10HANJia-wei KAMBERM.数据挖掘概念与技术[M].北京:机械工业出版社,2001.1 51-161.

共引文献73

同被引文献13

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部