期刊文献+

定向凝固通道偏析的数值模拟 被引量:5

Numerical simulation of channel segregation in directional solidification
原文传递
导出
摘要 为了研究二元组分铸锭中通道偏析的形成和发展,建立了双扩散作用下糊状区液相流动与溶质分布的数学模型,并对铸锭定向凝固过程中的通道偏析进行了数值模拟。运用SIMPLE算法编制了求解数学模型的程序,对模型中的质量、动量、能量和溶质等守恒方程联立求解。通过对NH4Cl-H2O铸锭底面冷却、凝固过程进行模拟研究,得到了定向凝固过程中的温度场、流场、溶质场。铸锭底面冷却时,富含溶质的枝晶间液相的流动可形成垂直向上生长的偏析通道,一些偏析通道由于相连通道的优先生长导致溶质贫化而被掩埋。通道的形成与溶质质量分数C0有很大关系,C0越高,越容易形成通道。C0较低的铸锭,只有在溶质富集到一定程度后才会产生通道。 The evolution of channel segregation in a binary alloy for various initial species concentrations in the ingot was analyzed using a mathematical model describing the fluid flow and species distributions in the mushy zone in a directionally solidified ingot. The model used the SIMPLE algorithm to simultaneously solve the quality, momentum, energy, and species conservation equations. The temperature, fluid flow, and species concentration distributions during the directional solidification were obtained for a NH4Cl-H2O ingot cooled from the bottom. The segregated channels grew upwards due to the movement of the water-rich interdendritic fluid, some of which may be buried in regions of low species concentrations when the growth in other regions is faster. The channel formation is related to the initial species concentration. Higher species concentrations are more likely to form channels. For low initial concentrations, channels will form at the end of the solidification stage when the species concentrations are high enough.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第11期1444-1447,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金 宝钢联合基金资助项目(50174031)
关键词 定向凝固 通道偏析 数值模拟 铸锭 温度场 流场 溶质场 directional solidification channel segregation numerical simulation
  • 相关文献

参考文献14

  • 1Sample A K, Hellawell A. The mechanisms of formation and prevention of channel segregation during alloy solidification [J]. Metallurgical Transactions A, 1983, 15A(12): 2163-2173.
  • 2Sarazin J R, Hellawell A. Channel formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb alloy ingots and comparison with the system NH4Cl-H2O [J]. Metallurgical Transactions A, 1988, 19A(7): 18611871.
  • 3Mori T, Li M. The effect of convectional flow in vertical directional solidification [J]. Solidification and Gravity, 2000, 329(4): 87-92.
  • 4Auburtin P, Wang T, Cockcroft S L. Freckle formation and criterion in superalloy casting [J]. Metallurgical and Materials Transactions B, 2000, 31B(4): 801-811.
  • 5Cadirli E, Gunduz M. The directional solidification of Pb-Sn alloys [J]. Journal of Materials Science, 2000, 35(15): 38373848.
  • 6Yu L, Ding G L, Reye J. Cellular/dendritic array tip morphology during directional solidification of Pb-5.8 wt pct Sb alloy [J]. Metallurgical and Materials Transactions A, 1999, 30A(9): 2463-2472.
  • 7Yeo S S, Tan F L, Tso C P. Formation of channels during the solidification of aqueous ammonium chloride in a cylindrical cavity [J]. Journal of Materials Processing & Manufacturing Science, 2001, 30(90): 230-248.
  • 8Felicelli S D, Heinrich J C, Poirier D R. Simulation of freckles during vertical solidification of binary alloys [J]. Metallurgical Transactions B, 1991, 22B(6): 847-857.
  • 9Flemings M C, Nereo G E. Macro-Segregation, part I [J]. Transactions of AIME, 1967, 15(239): 1449-1461.
  • 10Bennon W D, Incropera F P. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems, part I: Model formulation [J]. International Journal of Heat and Mass Transfer, 1987, 30(10): 2161-2170.

同被引文献44

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部